
Copyright 2006-8 Pico Technology Limited. All rights reserved.

PicoScope 2000 Series

Programmer's Guide

ps2000pg.en-1

PC Oscilloscopes

IContents

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

Contents
...11 Introduction

...11 Overview

...12 Licence conditions

...23 Trademarks

...24 Warranty

...25 Company details

...32 Installation

...31 Minimum system requirements

...32 Installation instructions

...43 Technical information

...41 Driver

...42 Programming overview

...43 Device features

...41 AC/DC coupling

...42 Voltage ranges

...53 Oversampling

...54 Scaling

...55 Signal generator

...56 Triggering

...67 Combining oscilloscopes

...68 Sampling modes

...114 Programming examples

...111 C

...122 Visual Basic

...123 Delphi

...124 Excel

...125 Agilent VEE

...126 LabVIEW

...135 Functions

...131 Introduction

...142 ps2000_close_unit

...153 ps2000_flash_led

...164 ps2000_get_streaming_last_values

...175 ps2000_get_streaming_values

...196 ps2000_get_streaming_values_no_aggregation

...217 ps2000_get_timebase

...228 ps2000_get_times_and_values

...249 ps2000_get_unit_info

...2510 ps2000_get_values

...2611 ps2000_last_button_press

...2712 ps2000_open_unit

...2813 ps2000_open_unit_async

...2914 ps2000_open_unit_progress

...3015 ps2000_overview_buffer_status

...3116 ps2000_ready

...3217 ps2000_run_block

...3318 ps2000_run_streaming

PicoScope 2000 Series Programmer's GuideII

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

...3419 ps2000_run_streaming_ns

...3520 ps2000SetAdvTriggerChannelConditions

...3721 ps2000SetAdvTriggerChannelDirections

...3822 ps2000SetAdvTriggerChannelProperties

...4023 ps2000SetAdvTriggerDelay

...4124 ps2000_set_channel

...4225 ps2000_set_ets

...4326 ps2000_set_light

...4427 ps2000_set_led

...4528 ps2000SetPulseWidthQualifier

...4729 ps2000SetSigGenArbitrary

...4930 ps2000SetSigGenBuiltIn

...5131 ps2000_set_trigger

...5232 ps2000_set_trigger2

...5333 ps2000_stop

...5434 my_get_overview_buffers

...566 Driver error codes

...574 Glossary

..59Index

Introduction 1

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

1 Introduction
1.1 Overview

The PicoScope 2000 series PC Oscilloscopes are low-cost , high-performance
instruments that are fully USB 2.0-capable and also backwards-compatible with USB
1.1. There is no need for an additional power supply, as power is taken from the USB
port.

This manual is for programmers intending to write their own software using the
PicoScope 2000 series API (Application Programming Interface). The scopes are also
supplied with ready-to-use programs called PicoScope and PicoLog, which include
their own on-line User's Guides.

Please read the important information in this introductory section and then proceed to
the Installation instructions .

1.2 Licence conditions
The material contained in this release is licensed, not sold. Pico Technology Limited
grants a licence to the person who installs this software, subject to the conditions
listed below.

Access

The licensee agrees to allow access to this software only to persons who have been
informed of these conditions and agree to abide by them.

Usage

The software in this release is for use only with Pico products or with data collected
using Pico products.

Copyright

Pico Technology claims the copyright of, and retains the rights to, all material
(software, documents etc.) contained in this release. You may copy and distribute the
entire release in its original state, but must not copy individual items within the
release other than for backup purposes.

Liability

Pico Technology and its agents shall not be liable for any loss, damage or injury,
howsoever caused, related to the use of Pico Technology equipment or software,
unless excluded by statute.

Fitness for purpose

Because no two applications are the same, Pico Technology cannot guarantee that its
equipment or software is suitable for a given application. It is your responsibility,
therefore, to ensure that the product is suitable for your application.

Mission-critical applications

This software is intended for use on a computer that may be running other software
products. For this reason, one of the conditions of the licence is that it excludes usage
in mission-critical applications; for example, life-support systems.

3

PicoScope 2000 Series Programmer's Guide2

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

1.3 Trademarks
Pico Technology Limited, PicoLog and PicoScope are internationally registered
trademarks.

Delphi is a registered trademark of Borland Software Corporation.
LabView is a registered trademark of National Instruments Corporation.
Pentium is a registered trademark of Intel Corporation.
VEE is a registered trademark of Agilent Technologies.
Windows, Excel and Visual Basic are registered trademarks of Microsoft
Corporation.

1.4 Warranty
Pico Technology warrants upon delivery, and for a period of 24 months unless
otherwise stated from the date of delivery, that the Goods will be free from defects in
material and workmanship.

Pico Technology shall not be liable for a breach of the warranty if the defect has been
caused by fair wear and tear, wilful damage, negligence, abnormal working conditions
or failure to follow Pico Technology's spoken or written advice on the storage,
installation, commissioning, use or maintenance of the Goods or (if no advice has
been given) good trade practice; or if the Customer alters or repairs such Goods
without the written consent of Pico Technology.

1.5 Company details
Address:

Pico Technology
James House
Colmworth Business Park
Eaton Socon
ST. NEOTS
Cambridgeshire
PE19 8YP
United Kingdom

Phone: +44 (0) 1480 396 395
Fax: +44 (0) 1480 396 296

Email:

Technical Support: support@picotech.com
Sales: sales@picotech.com

Web site: www.picotech.com

http://www.picotech.com

Installation 3

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

2 Installation
2.1 Minimum system requirements

For the PicoScope 2000 series PC Oscilloscope to operate correctly, a computer with
the minimum system requirements to run Windows or the following (whichever is the
higher specification) is required:

Item Absolute
minimum

Recommended
minimum

Recommended
full specification

Operating system Windows XP SP2 or Vista (32-bit versions only)

Processor

As required
by Windows

300 MHz 1 GHz

Memory 256 MB 512 MB

Free disk space
(Note 1)

1 GB 2 GB

Ports USB 1.1 compliant port USB 2.0 compliant port

Note 1: The PicoScope software does not use all the disk space specified in the table.
The free space is required to make Windows run efficiently.

2.2 Installation instructions

Important

Do not connect the PC Oscilloscope to your PC until you have installed the software.

Install the software by following the steps in the printed Installation Guide supplied
with your oscilloscope. You must install the PicoScope 6 PC Oscilloscope software
even if you do not intend to use it, as it includes the driver and API DLL that you
will need to write your own software.
Connect the oscilloscope's USB port to the PC using the USB cable supplied. There
is no need for an additional power supply, as the oscilloscope obtains its power
from the PC.

Checking the installation

Once you have installed the software, ensure that the oscilloscope is connected to the
PC and then start the PicoScope software. PicoScope should show a small 50 Hz or
60 Hz mains signal in the oscilloscope window when you touch the probe tip with your
finger.

PicoScope 2000 Series Programmer's Guide4

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3 Technical information
3.1 Driver

Important
You must install the PicoScope software, which includes the driver for the

PicoScope 2000 Series PC Oscilloscope, before plugging the oscilloscope into
your computer for the first time.

(If you do plug in an oscilloscope before installing the driver, Windows will designate
the device as Unknown. You will then need to manually delete the device using the

Device Manager before you can install the correct driver.)

The Windows XP/Vista 32-bit driver, picopp.sys, is installed under the control of

an information file, picopp.inf.

Once you have installed the PicoScope software, Windows will automatically install
the driver when you plug in the oscilloscopefor the first time.

3.2 Programming overview
The ps2000.dll library in your PicoScope installation directory allows you to

program a PicoScope 2000 Series oscilloscopeusing standard C function calls.

A typical program for capturing data consists of the following steps:

Open the oscilloscope.
Set up the input channels with the required voltage ranges and coupling mode

.
Set up triggering .
Start capturing data. (See Sampling modes , where programming is discussed
in more detail.)
Wait until the oscilloscope is ready.
Copy data to a buffer.
Stop capturing data.
Close the oscilloscope.

Numerous sample programs are installed with your PicoScope software, if you
select this option during installation. These show how to use the functions of the
driver software in each of the modes available.

3.3 Device features
3.3.1 AC/DC coupling

Using the ps2000_set_channel() function, each channel can be set to either AC or
DC coupling. When AC coupling is used, any component of the signal below about 1
Hz is filtered out.

3.3.2 Voltage ranges
It is possible to set the gain for each channel with the ps2000_set_channel()
function. The input voltage ranges available depend on which type of oscilloscope is
connected.

13

27

4

4

5

6

11

41

41

Technical information 5

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.3.3 Oversampling
When the oscilloscope is operating at sampling rates less than the maximum, it is
possible to oversample. Oversampling is taking more than one measurement during
a time interval and returning an average. If the signal contains a small amount of
noise, this technique can increase the effective vertical resolution of the
oscilloscope by the amount given by the equation below:

Increase in resolution (bits) = (log oversample) / (log 4)

Applicability Available in block mode only.

3.3.4 Scaling
The driver normalises all readings to 16 bits, regardless of the vertical resolution of
the oscilloscope. The following table shows the relationship between the reading from
the driver and the signal level.

Constant Reading Voltage

PS2000_LOST_DATA -32 768 Indicates a buffer overrun in fast streaming
mode.

PS2000_MIN_VALUE -32 767 Negative full scale

0 0 Zero volts

PS2000_MAX_VALUE 32 767 Positive full scale

3.3.5 Signal generator
The PicoScope 2203, 2204 and 2205 PC Oscilloscopes have a built-in signal
generator which is set up using ps2000SetSigGenBuiltIn() .

Applicability PicoScope 2203, 2204 and 2205 oscilloscopes only.

3.3.6 Triggering
PicoScope 2000 Series PC Oscilloscopes can either start collecting data immediately,
or be programmed to wait for a trigger event to occur. In both cases you need to
use the ps2000_set_trigger() function or (for scopes that support advanced
triggering) the ps2000SetAdvTriggerChannelConditions() function. A trigger event
can occur on any of the conditions available in the simple and advanced triggering
modes.

Applicability Available in block mode and fast streaming mode only. Calls
to the ps2000_set_trigger() and
ps2000SetAdvTriggerChannelConditions() functions have no
effect in compatible streaming mode .

58

7

58

10

49

51

35

7 10

51

35

9

PicoScope 2000 Series Programmer's Guide6

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.3.7 Combining oscilloscopes
It is possible to collect data using up to four PicoScope 2000 Series PC Oscilloscopes
at the same time. Each oscilloscope must be connected to a separate USB port. If a
USB hub is used it must be a powered hub.

To begin, call ps2000_open_unit() to obtain a handle for each oscilloscope. All the
other functions require this handle for oscilloscope identification. For example, to
collect data from two oscilloscopes at the same time:

handle1 = ps2000_open_unit()
handle2 = ps2000_open_unit()

ps2000_set_channel(handle1)
... set up unit 1
ps2000_run_block(handle1)

ps2000_set_channel(handle2)
... set up unit 2
ps2000_run_block(handle2)

ready = FALSE
while not ready

ready = ps2000_ready(handle1)
ready &= ps2000_ready(handle2)

ps2000_get_values(handle1)
ps2000_get_values(handle2)

Note: it is not possible to synchronise the collection of data between oscilloscopes that
are being used in combination.

3.3.8 Sampling modes
3.3.8.1 Introduction

PicoScope 2000 Series PC Oscilloscopes can run in various sampling modes.

Block mode. At the highest sampling rates, the oscilloscope collects data
much faster than a PC can read it. In this case, the oscilloscope stores a block of
data in an internal memory buffer, delaying transfer to the PC until the required
number of data points have been sampled.
Streaming modes. At all but the highest sampling rates, these modes allow
accurately timed data to be transferred back to the PC without gaps. The
computer instructs the oscilloscope to start collecting data. The oscilloscope then
transfers data back to the PC without storing it in its own memory, so the size of
the data set is limited only by the size of the PC's memory. Sampling intervals
from less than one microsecond to 60 seconds are possible. There are two
streaming modes:
· Compatible streaming mode
· Fast streaming mode

27

7

9

9

10

Technical information 7

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.3.8.2 Block mode

In block mode, the computer prompts the oscilloscope to collect a block of data in its
internal memory. When the oscilloscope has collected the whole block, it signals that
it is ready and then transfers the whole block to the computer's memory through the
USB port.

The maximum number of values depends upon the size of the oscilloscope's memory.
A PicoScope 2000 Series oscilloscope can sample at a number of different rates that
correspond to the maximum sampling rate divided by 1, 2, 4, 8 and so on.

There is a separate memory buffer for each channel. When a channel is unused, its
memory can be borrowed by the enabled channels. This feature is handled
transparently by the driver.

The driver normally performs a number of setup operations before collecting each
block of data. This can take up to 50 milliseconds. If it is necessary to collect data
with the minimum time interval between blocks, avoid calling setup functions between
calls to ps2000_run_block() , ps2000_ready() , ps2000_stop() and
ps2000_get_values() .

See Using block mode for programming details.

3.3.8.3 Using block mode

This is the general procedure for reading and displaying data in block mode:

1. Open the oscilloscope using ps2000_open_unit().
2. Select channel ranges and AC/DC coupling using ps2000_set_channel().
3. Using ps2000_set_trigger() , set the trigger if required.
4. Using ps2000_get_timebase() , select timebases until you locate the required

time interval per sample.
5. Start the oscilloscope running using ps2000_run_block().
6. Wait until the oscilloscope says it is ready using ps2000_ready().
7. Transfer the block of data from the oscilloscope using ps2000_get_values()

or ps2000_get_times_and_values().
8. Display the data.
9. Repeat steps 5 to 8.
10. Stop the oscilloscope using ps2000_stop() .

32 31 53

25

7

7

27

41

51

21

32

31

25

22

53

PicoScope 2000 Series Programmer's Guide8

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.3.8.4 ETS (Equivalent Time Sampling)

ETS is a way of increasing the effective sampling rate when working with repetitive
signals. It is controlled by the ps2000_set_trigger() and ps2000_set_ets()
functions.

ETS works by capturing many instances of a repetitive waveform, then combining
them to produce a composite waveform that has a higher effective sampling rate than
the individual instances. The maximum effective sampling rates that can be achieved
with this method are listed in the Specifications table for your oscilloscope.

Because of the high sensitivity of ETS mode to small time differences, you must set
up the trigger to provide a stable waveform that varies as little as possible from one
capture to the next.

Applicability Block mode only.

PicoScope 2104, 2105, 2203, 2204 and 2205 oscilloscopes.

As ETS returns random time intervals, the
ps2000_get_times_and_values() function must be used. The
ps2000_get_values() function will return FALSE (0).

Stable, repetitive signals only.

3.3.8.5 Using ETS mode

This is the general procedure for reading and displaying data in ETS mode:

1. Open the oscilloscope using ps2000_open_unit().
2. Select channel ranges and AC/DC switches using ps2000_set_channel().
3. Using ps2000_set_trigger() , set the trigger if required.
4. Set ETS mode using ps2000_set_ets().
5. Start the oscilloscope running using ps2000_run_block().
6. Wait until the oscilloscope says it is ready using ps2000_ready().
7. Transfer the block of data from the oscilloscope using

ps2000_get_times_and_values().
8. Display the data.
9. Repeat steps 6 to 8 as necessary.
10. Stop the oscilloscope using ps2000_stop().

51 42

7

22

25

8

27

41

51

42

32

31

22

53

Technical information 9

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.3.8.6 Streaming mode

Streaming mode is an alternative to block mode that can capture data without
gaps between blocks.

In streaming mode, the computer prompts the oscilloscope to start collecting data.
The data is then transferred back to the PC without being stored in the oscilloscope's
memory. Data can be sampled with a period between 1 µs or less and 60 s, and the
maximum number of samples is limited only by the amount of free space on the PC's
hard disk.

There are two varieties of streaming mode:

Compatible streaming mode
Fast streaming mode

3.3.8.7 Compatible streaming mode

Compatible streaming mode is a basic streaming mode that works at speeds
from one sample per minute to a thousand samples per second.

The oscilloscope's driver transfers data to a computer program using either normal or
windowed mode. In normal mode, any data collected since the last data transfer
operation is returned in its entirety. Normal mode is useful if the computer program
requires fresh data on every transfer. In windowed mode, a fixed number of
samples is returned, where the oldest samples may have already been returned
before. Windowed mode is useful when the program requires a constant time period
of data.

Once the oscilloscope is collecting data in streaming mode, any setup changes (for
example, changing a channel range or AC/DC setting) will cause a restart of the
data stream. The driver can buffer up to 32 K samples of data per channel, but the
user must ensure that the ps2000_get_values() function is called frequently
enough to avoid buffer overrun.

See Using compatible streaming mode for programming details.

Applicability Not available on PicoScope 2203, 2204 or 2205.

Does not support triggering .

The ps2000_get_times_and_values() function always returns
FALSE (0) in streaming mode.

3.3.8.8 Using compatible streaming mode

This is the general procedure for reading and displaying data in compatible streaming
mode :

1. Open the oscilloscope using ps2000_open_unit().
2. Select channel ranges and AC/DC switches using ps2000_set_channel().
3. Start the oscilloscope running using ps2000_run_streaming().
4. Transfer the block of data from the oscilloscope using ps2000_get_values().
5. Display the data.
6. Repeat steps 4 and 5 as necessary.
7. Stop the oscilloscope using ps2000_stop().

7

9

10

9

57

25

9

5

22

9

27

41

33

25

53

PicoScope 2000 Series Programmer's Guide10

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.3.8.9 Fast streaming mode

Fast streaming mode is an advanced streaming mode that can transfer data at
speeds of a million samples per second or more, depending on the computer's
performance. This makes it suitable for high-speed data acquisition, allowing you
to capture very long data sets limited only by the computer's memory.

Fast streaming mode also provides data aggregation , which allows your application
to zoom in and out of the data with the minimum of effort.

Applicability PicoScope 2203, 2204 and 2205 only.

Works with triggering.

See Using fast streaming mode for programming details.

3.3.8.10 Using fast streaming mode

This is the general procedure for reading and displaying data in fast streaming mode:

1. Open the oscilloscope using ps2000_open_unit().
2. Select channel ranges and AC/DC switches using ps2000_set_channel().
3. Set the trigger using ps2000_set_trigger().
4. Start the oscilloscope running using ps2000_run_streaming_ns().
5. Get a block of data from the oscilloscope using

ps2000_get_streaming_last_values().
6. Display or process the data.
7. If required, check for overview buffer overruns by calling

ps2000_overview_buffer_status().
8. Repeat steps 5 to 7 as necessary or until auto_stop is TRUE.
9. Stop fast streaming using ps2000_stop().
10. Retrieve any part of the data at any time scale by calling

ps2000_get_streaming_values().
11. If you require raw data, retrieve it by calling

ps2000_get_streaming_values_no_aggregation().
12. Repeat steps 10 to 11 as necessary.
13. Close the oscilloscope by calling ps2000_close_unit().

9

57

5

10

10

27

41

51

34

16

30

53

17

19

14

Technical information 11

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.4 Programming examples
3.4.1 C

There are two C example programs: a simple GUI application, and a more
comprehensive console mode program that demonstrates all of the facilities of the
driver.

GUI example

The GUI example program is a generic Windows application - that is, it does not use
Borland AppExpert or Microsoft AppWizard. To compile the program, create a new
project for an Application containing the following files:

ps2000.c
resource.h

and

ps2000bc.lib (Borland 32-bit applications)

or
ps2000.lib (Microsoft Visual C 32-bit applications)

The following files must be in the compilation directory:

ps2000.rch
ps2000.h

and the following file must be in the same directory as the executable.

ps2000.dll

Console example

The console example program is also a generic Windows application - that is, it does
not use Borland AppExpert or Microsoft AppWizard. To compile the program, create a
new project for an Application containing the following files:

ps2000con.c

and

ps2000bc.lib (Borland 32-bit applications)

or
ps2000.lib (Microsoft Visual C 32-bit applications).

The following files must be in the compilation directory:

ps2000.h

and the following file must be in the same directory as the executable.

ps2000.dll

PicoScope 2000 Series Programmer's Guide12

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.4.2 Visual Basic
The Examples subdirectory contains the following files:

ps2000.vbp - project file

ps2000.bas - procedure prototypes

ps2000.frm - form and program

Note: the functions that return a TRUE/FALSE value return 0 for FALSE and 1 for

TRUE, whereas Visual Basic expects 65 535 for TRUE. To avoid this problem, check

for > 0 rather than = TRUE.

3.4.3 Delphi
The program ps2000.dpr demonstrates how to operate PicoScope 2000 Series PC

Oscilloscopes. The file ps2000.inc contains procedure prototypes that you can

include in your own programs. Other required files include:

ps2000.res
ps2000fm.dfm
ps2000fm.pas

This has been tested with Delphi version 3.

3.4.4 Excel
1. Load the spreadsheet ps2000.xls
2. Select Tools | Macro
3. Select GetData
4. Select Run

Note: the Excel Macro language is similar to Visual Basic. The functions which return
a TRUE/FALSE value, return 0 for FALSE and 1 for TRUE, whereas Visual Basic

expects 65 535 for TRUE. Check for > 0 rather than = TRUE.

3.4.5 Agilent VEE
The example function ps2000.vee is in the Examples subdirectory. It uses

procedures that are defined in ps2000.vh. It was tested using Agilent VEE version 5.

3.4.6 LabVIEW
The ps2000.vi example in the Examples subdirectory shows how to access the

driver functions using LabVIEW. It was tested using version 6.1 of LabVIEW for
Windows. To use the example, copy these files to your LabVIEW directory:

ps2000.vi
open_unit.vi
set_channel.vi
setup_data_collection.vi

You will also need

ps2000.dll

from the installation directory.

Technical information 13

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5 Functions
3.5.1 Introduction

The PicoScope 2000 Series API exports the following functions for you to use in your
own applications:

ps2000_close_unit
ps2000_flash_led
ps2000_get_streaming_last_values
ps2000_get_streaming_values
ps2000_get_streaming_values_no_aggregation
ps2000_get_timebase
ps2000_get_times_and_values
ps2000_get_unit_info
ps2000_get_values
ps2000_last_button_press
ps2000_open_unit
ps2000_open_unit_async
ps2000_open_unit_progress
ps2000_overview_buffer_status
ps2000_ready
ps2000_run_block
ps2000_run_streaming
ps2000_run_streaming_ns
ps2000SetAdvTriggerChannelConditions
ps2000SetAdvTriggerChannelDirections
ps2000SetAdvTriggerChannelProperties
ps2000SetAdvTriggerDelay
ps2000_set_channel
ps2000_set_ets
ps2000_set_led
ps2000_set_light
ps2000SetPulseWidthQualifier
ps2000SetSigGenArbitrary
ps2000SetSigGenBuiltIn
ps2000_set_trigger
ps2000_set_trigger2
ps2000_stop

The following user-defined function is also described here:

my_get_overview_buffers

14

15

16

17

19

21

22

24

25

26

27

28

29

30

31

32

33

34

35

37

38

40

41

42

44

43

45

47

49

51

52

53

54

PicoScope 2000 Series Programmer's Guide14

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.2 ps2000_close_unit
short ps2000_close_unit (

short handle
)

Shuts down a PicoScope 2000 Series oscilloscope.

Applicability All modes

Arguments handle: the handle, returned by ps2000_open_unit() , of the

oscilloscope being closed.

Returns 1: if a valid handle is passed.
0: if handle is not valid.

27

Technical information 15

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.3 ps2000_flash_led
short ps2000_flash_led (

short handle
)

Flashes the LED on the front of the oscilloscope (or in the pushbutton, for the
PicoScope 2104 and 2105 oscilloscopes) three times and returns within one second.

Applicability All modes

Arguments handle: the handle of the PicoScope 2000 Series oscilloscope.

Returns 1: if a valid handle is passed.
0: if handle is invalid.

PicoScope 2000 Series Programmer's Guide16

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.4 ps2000_get_streaming_last_values
short ps2000_get_streaming_last_values (

short handle
GetOverviewBuffersMaxMin lpGetOverviewBuffersMaxMin

)

This function is used to collect the next block of values while fast streaming is
running. You must have called ps2000_run_streaming_ns() beforehand to set up
fast streaming.

Applicability Fast streaming mode only.

PicoScope 2203, 2204 and 2205 only.

Not compatible with ETS triggering - function has no effect in
ETS mode.

Arguments handle: the handle of the required oscilloscope.

lpGetOverviewBuffersMaxMin: a pointer to the

my_get_overview_buffers() callback function in your application
that receives data from the streaming driver.

Returns The actual number of data values returned per channel, which may
be less than max_samples if streaming, where max_samples is a

parameter passed to ps2000_run_streaming_ns().

0: if one of the parameters is out of range.

10

34

10

8

54

34

Technical information 17

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.5 ps2000_get_streaming_values
unsigned long ps2000_get_streaming_values (

short handle,
double *start_time,
short *pbuffer_a_max,
short *pbuffer_a_min,
short *pbuffer_b_max,
short *pbuffer_b_min,
short *pbuffer_c_max,
short *pbuffer_c_min,
short *pbuffer_d_max,
short *pbuffer_d_min,
short *overflow,
unsigned long *triggerAt,
short *triggered,
unsigned long no_of_values,
unsigned long noOfSamplesPerAggregate

)

This function is used after the driver has finished collecting data in fast streaming
mode. It allows you to retrieve data with different aggregation ratios, and thus
zoom in to and out of any region of the data.

Before calling this function, first capture some data in fast streaming mode, stop fast
streaming by calling ps2000_stop(), then allocate sufficient buffer space to receive
the requested data. The function will store the data in your buffer with values in the
range PS2000_MIN_VALUE to PS2000_MAX_VALUE. The special value

PS2000_LOST_DATA is stored in the buffer when data could not be collected because

of a buffer overrun. (See Scaling for more on data values.)

Each sample of aggregated data is created by processing a block of raw samples. The
aggregated sample is stored as a pair of values: the minimum and the maximum
values of the block.

10 57

53

5

PicoScope 2000 Series Programmer's Guide18

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

Applicability Fast streaming mode only.

PicoScope 2203, 2204 and 2205 only.

Not compatible with ETS triggering - function has no effect in
ETS mode.

Arguments handle: the handle of the required oscilloscope.

start_time: the time in nanoseconds, relative to the trigger

point, of the first data sample required.

pbuffer_a_max, pbuffer_a_min: pointers to two buffers into

which the function will write the maximum and minimum
aggregated sample values from channel A.

pbuffer_b_max, pbuffer_b_min: as above but for channel B

(two-channel scopes only).

pbuffer_c_max, pbuffer_c_min, pbuffer_d_max,
pbuffer_d_min: not used

overflow: on exit, the function writes a bit field here indicating

whether the voltage on each of the input channels has overflowed:

Bit 0: Ch A overflow
Bit 1: Ch B overflow

triggerAt: on exit, the function writes an index value here. This

is the offset, from the start of the buffer, of the sample at the
trigger reference point. It is valid only when triggered is TRUE.

triggered: a pointer to a Boolean indicating that a trigger has

occurred and triggerAt is valid.

no_of_values: the number of values required.

noOfSamplesPerAggregate: the number of samples that the

driver should combine to form each aggregated value pair. The
pair consists of the maximum and minimum values of all the
samples that were aggregated. For channel A, the minimum value
is stored in the buffer pointed to by pbuffer_a_min and the

maximum value in the buffer pointed to by pbuffer_a_max.

Returns The number of values written to each buffer, if successful.
0: if a parameter was out of range.

10

8

57

Technical information 19

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.6 ps2000_get_streaming_values_no_aggregation
unsigned long ps2000_get_streaming_values_no_aggregation (

short handle,
double *start_time,
short *pbuffer_a,
short *pbuffer_b,
short *pbuffer_c,
short *pbuffer_d,
short *overflow,
unsigned long *triggerAt,
short *trigger,
unsigned long no_of_values

)

This function retrieves raw streaming data from the driver's data store after fast
streaming has stopped.

Before calling the function, capture some data using fast streaming, stop streaming
using ps2000_stop(), and then allocate sufficient buffer space to receive the
requested data. The function will store the data in your buffer with values in the
range PS2000_MIN_VALUE to PS2000_MAX_VALUE. The special value

PS2000_LOST_DATA is stored in the buffer when data could not be collected because

of a buffer overrun. (See Scaling for more details of data values.)

10

53

5

PicoScope 2000 Series Programmer's Guide20

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

Applicability Fast streaming mode only.

PicoScope 2203, 2204 and 2205 only.

Not compatible with ETS triggering - has no effect in ETS mode.

Arguments handle: the handle of the required oscilloscope.

start_time: the time in nanoseconds of the first data sample

required.

pbuffer_a, pbuffer_b: pointers to buffers into which the

function will write the raw sample values from channels A (all
scopes) and B (two-channel scopes only).

pbuffer_c, pbuffer_d: not used.

overflow: on exit, the function will write a bit field here

indicating whether the voltage on each of the input channels has
overflowed. Bit 0 is the LSB. The bit assignments are as follows:

Bit 0 - Ch A overflow
Bit 1 - Ch B overflow

triggerAt: on exit, the function writes an index into the buffers

here. The index is the number of the the sample at the trigger
reference point. It is valid only when trigger is TRUE.

trigger: on exit, the function writes a Boolean here indicating

that a trigger has occurred and triggerAt is valid.

no_of_values: the number of values required.

Returns The number of values written to each buffer, if successful.
0: if a parameter was out of range.

10

8

Technical information 21

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.7 ps2000_get_timebase
short ps2000_get_timebase (

short handle,
short timebase,
long no_of_samples,
long *time_interval,
short *time_units,
short oversample,
long *max_samples

)

This function discovers which timebases are available on the oscilloscope. You
should set up the channels using ps2000_set_channel() and, if required, ETS
mode using ps2000_set_ets() first. Then call this function with increasing values
of timebase, starting from 0, until you find a timebase with a sampling interval and

sample count close enough to your requirements.

Applicability All modes

Arguments handle: the handle of the required oscilloscope.

timebase: a code between 0 and the maximum timebase

(depending on the oscilloscope). Timebase 0 is the fastest
timebase. Each successive timebase has twice the sampling
interval of the previous one.

no_of_samples: the number of samples that you require. The

function uses this value to calculate the most suitable time unit to
use.

time_interval: on exit, this location will contain the time

interval between readings at the selected timebase. If
time_interval is NULL, the function will write nothing.

time_units: on exit, this location will contain an enumerated

type indicating the most suitable unit for expressing sample times.
You should pass this value to ps2000_get_times_and_values() .
If time_units is null, the function will write nothing.

oversample: the amount of oversample required. For example,

an oversample of 4 results in a time_interval 4 times larger and

a max_samples 4 times smaller. At the same time it increases the

effective resolution by one bit. See Oversampling for more
details.

max_samples: on exit, this location contains the maximum

number of samples available. The number may vary depending on
the number of channels enabled, the timebase chosen and the
oversample multiplier selected. If max_samples is null, the

function will write nothing.

Returns 1: if all parameters are in range.
0: on error.

58

41 8

42

22

5

PicoScope 2000 Series Programmer's Guide22

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.8 ps2000_get_times_and_values
long ps2000_get_times_and_values (

short handle
long *times,
short *buffer_a,
short *buffer_b,
short *buffer_c,
short *buffer_d,
short *overflow,
short time_units,
long no_of_values

)

This function is used to get values and times in block mode after calling
ps2000_run_block() .

7

32

Technical information 23

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

Applicability Block mode only. It will not return any valid times if the
oscilloscope is in streaming mode .

Essential for ETS operation.

Arguments handle: the handle of the required oscilloscope.

times: a pointer to a buffer for the sample times in time_units.

Each time is the interval between the trigger event and the
corresponding sample. Times before the trigger event are
negative, and times after the trigger event are positive.

buffer_a, buffer_b: pointers to buffers that receive data from

the channels A and B. A pointer will not be used if the oscilloscope
is not collecting data from that channel. If a pointer is NULL,
nothing will be written to it.

buffer_c, buffer_d: not used.

overflow: a bit pattern indicating whether an overflow has

occurred and, if so, on which channel. Bit 0 is the LSB. The bit
assignments are as follows:

Bit 0 - Ch A overflow
Bit 1 - Ch B overflow

time_units: can be one of the following:

PS2000_FS (0), femtoseconds,

PS2000_PS (1), picoseconds,

PS2000_NS (2), nanoseconds [default]

PS2000_US (3), microseconds,

PS2000_MS (4), milliseconds,

PS2000_S (5), seconds

no_of_values: the number of data points to return. In

streaming mode, this is the maximum number of values to return.

Returns The actual number of data values per channel returned, which may
be less than no_of_values if streaming.

0: if one or more of the parameters are out of range, or if the
times will overflow with the time_units requested (use

ps2000_get_timebase() to acquire the most suitable
time_units), or if the oscilloscope is in streaming mode.

7

9

8

21

PicoScope 2000 Series Programmer's Guide24

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.9 ps2000_get_unit_info
short ps2000_get_unit_info (

short handle,
char *string,
short string_length,
short line

)

This function writes oscilloscope information to a character string. If the oscilloscope
failed to open, only line types 0 and 6 are available to explain why the last open unit

call failed.

Applicability All modes

Arguments handle: the handle of the oscilloscope from which information is

required. If an invalid handle is passed, the error code from the
last oscilloscope that failed to open is returned.

string: a pointer to the character string buffer in the calling

function where the function will write the oscilloscope information
string selected with line. If string is NULL, no information will be

written.

string_length: the length of the character string buffer. If the

string is not long enough to accept all of the information, only the
first string_length characters are returned.

line: an enumerated type specifying what information is required

from the driver.

Returns The length of the string written to the string buffer.

0: if one of the parameters is out of range or string is NULL.

line String returned Example

0 PS2000_DRIVER_VERSION The version number of the DLL
used by the oscilloscope
driver.

"1, 0, 0,
2"

1 PS2000_USB_VERSION The type of USB connection
that is being used to connect
the oscilloscope to the
computer.

"1.1" or
"2.0"

2 PS2000_HARDWARE_VERSION The hardware version of the
attached oscilloscope.

"1"

3 PS2000_VARIANT_INFO The variant of PicoScope 2000
PC Oscilloscope that is
attached to the computer.

"2203"

4 PS2000_BATCH_AND_SERIAL The batch and serial number of
the oscilloscope.

"CMY66/052"

5 PS2000_CAL_DATE The calibration date of the
oscilloscope.

"14Jan08"

6 PS2000_ERROR_CODE One of the Error codes . "4"56

Technical information 25

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.10 ps2000_get_values
long ps2000_get_values (

short handle
short *buffer_a,
short *buffer_b,
short *buffer_c,
short *buffer_d,
short *overflow,
long no_of_values

)

This function is used to get values in compatible streaming mode after calling
ps2000_run_streaming() , or in block mode after calling ps2000_run_block() .

Applicability Compatible streaming mode and block mode only.

Does nothing if ETS triggering is enabled. Use
ps2000_get_times_and_values() instead.

Do not use in fast streaming mode . Use
ps2000_get_streaming_last_values() instead.

Arguments handle: the handle of the required oscilloscope.

buffer_a, buffer_b: pointers to the buffers that receive data

from the specified channels (A and B). A pointer is not used if the
oscilloscope is not collecting data from that channel. If a pointer is
NULL, nothing will be written to it.

buffer_c, buffer_d: not used.

overflow: on exit, contains a bit pattern indicating whether an

overflow has occurred and, if so, on which channel. Bit 0 is the
least significant bit. The bit assignments are as follows:

Bit 0 - Ch A overflow
Bit 1 - Ch B overflow

no_of_values: the number of data points to return. In

streaming mode, this is the maximum number of values to return.

Returns The actual number of data values per channel returned, which may
be less than no_of_values if streaming.

0: if one of the parameters is out of range or the oscilloscope is not
in a suitable mode.

9

33 7 32

9 7

8

22

10

16

PicoScope 2000 Series Programmer's Guide26

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.11 ps2000_last_button_press
short ps2000_last_button_press (

short handle
)

This function returns the last registered state of the pushbutton on the PicoScope
2104 or 2105 PC Oscilloscope and then resets the status to zero.

Applicability PicoScope 2104 and 2105 only

Arguments handle: handle of the oscilloscope

Returns 0: no button press registered
1: short button press registered
2: long button press registered

Technical information 27

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.12 ps2000_open_unit
short ps2000_open_unit (

void
)

This function opens a PicoScope 2000 Series oscilloscope. The driver can support up
to four oscilloscopes.

Applicability All modes

Arguments None

Returns -1: if the oscilloscope fails to open.
0: if no oscilloscope is found.
>0 (oscilloscope handle): if the oscilloscope opened. Use this as
the handle argument for all subsequent API calls for this
oscilloscope.

PicoScope 2000 Series Programmer's Guide28

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.13 ps2000_open_unit_async
short ps2000_open_unit_async (

void
)

This function opens a PicoScope 2000 Series oscilloscope without waiting for the
operation to finish. You can find out when it has finished by periodically calling
ps2000_open_unit_progress() until that function returns a non-zero value and a
valid oscilloscope handle.

The driver can support up to four oscilloscopes.

Applicability All modes

Arguments None

Returns 0: if there is a previous open operation in progress.
1: if the call has successfully initiated an open operation.

29

Technical information 29

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.14 ps2000_open_unit_progress
short ps2000_open_unit_progress (

short *handle,
short *progress_percent

)

This function checks on the progress of ps2000_open_unit_async() .

Applicability All modes.

Use only with ps2000_open_unit_async() .

Arguments handle: a pointer to where the function should store the handle

of the opened oscilloscope.

0 if no oscilloscope is found or the oscilloscope fails to open,

handle of oscilloscope (valid only if function returns 1)

progress_percent: a pointer to an estimate of the progress

towards opening the oscilloscope. The function will write a value
from 0 to 100, where 100 implies that the operation is complete.

Returns 1: if the driver successfully opens the oscilloscope
0: if opening still in progress
-1: if the oscilloscope failed to open or was not found

28

28

PicoScope 2000 Series Programmer's Guide30

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.15 ps2000_overview_buffer_status
short ps2000_overview_buffer_status (

short handle,
short *previous_buffer_overrun

)

This function indicates whether or not the overview buffers used by
ps2000_run_streaming_ns() have overrun. If an overrun occurs, you can choose
to increase the overview_buffer_size argument that you pass in the next call to

ps2000_run_streaming_ns() .

Applicability Fast streaming mode only.

PicoScope 2203, 2204 and 2205 only.

Not compatible with ETS triggering - function has no effect in
ETS mode.

Arguments handle: the handle of the required oscilloscope.

previous_buffer_overrun: a pointer to a Boolean indicating

whether the overview buffers have overrun. The function will write
a non-zero value to indicate a buffer overrun.

Returns 0: if the function was successful.
1: if the function failed due to an invalid handle.

34

34

10

8

Technical information 31

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.16 ps2000_ready
short ps2000_ready (

short handle
)

This function checks to see if the oscilloscope has finished the last data collection
operation.

Applicability Block mode only. Does nothing if the oscilloscope is in
streaming mode .

Arguments handle: the handle of the required oscilloscope.

Returns 1: if ready. The oscilloscope has collected a complete block of data
or the auto trigger timeout has been reached.
0: if not ready. An invalid handle was passed, or the oscilloscope is
in streaming mode, or the oscilloscope is still collecting data in
block mode.
-1: if the oscilloscope is not attached. The USB transfer failed,
indicating that the oscilloscope may well have been unplugged.

7

9

PicoScope 2000 Series Programmer's Guide32

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.17 ps2000_run_block
short ps2000_run_block (

short handle,
long no_of_samples,
short timebase,
short oversample,
long *time_indisposed_ms

)

This function tells the oscilloscope to start collecting data in block mode .

Applicability Block mode only.

Arguments handle: the oscilloscope of the required oscilloscope.

no_of_samples: the number of samples to return.

timebase: a code between 0 and the maximum timebase available

(consult the driver header file). Timebase 0 gives the maximum
sample rate available, timebase 1 selects a sample rate half as fast,
timebase 2 is half as fast again and so on. For the maximum
sample rate, see the specifications for your oscilloscope. The
number of channels enabled may affect the availability of the
fastest timebases.

oversample: the oversampling factor, a number between 1 and

256. See Oversampling for details.

time_indisposed_ms: a pointer to the approximate time, in

milliseconds, that the ADC will take to collect data. If a trigger is
set, it is the amount of time the ADC takes to collect a block of data
after a trigger event, calculated as (sample interval) x (number of
points required). The actual time may differ from computer to
computer, depending on how quickly the computer can respond to
I/O requests.

Returns 0: if one of the parameters is out of range.
1: if successful.

7

7

5

Technical information 33

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.18 ps2000_run_streaming
short ps2000_run_streaming (

short handle,
short sample_interval_ms,
long max_samples,
short windowed

)

This function tells the oscilloscope to start collecting data in compatible streaming
mode . If this function is called when a trigger has been enabled, the trigger
settings will be ignored.

For streaming with the PicoScope 2203, 2204 and 2205 variants, use
ps2000_run_streaming_ns() instead.

Applicability PicoScope 2202, 2104 and 2105 only.

Arguments handle: the handle of the required oscilloscope.

sample_interval_ms: the time interval, in milliseconds, between

data points. This can be no shorter than 1 ms.

max_samples: the maximum number of samples that the driver is

to store. This can be no greater than 60 000. It is the application's
responsibility to retrieve data before the oldest values are
overwritten.

windowed: if this is 0, only the values taken since the last call to

ps2000_get_values() are returned. If this is 1, the number of

values requested by ps2000_get_values() are returned, even if
they have already been read by ps2000_get_values() .

Returns 1: if streaming has been enabled correctly.

0: if a problem occurred or a value was out of range.

9

34

25

25

25

PicoScope 2000 Series Programmer's Guide34

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.19 ps2000_run_streaming_ns
short ps2000_run_streaming_ns (

short handle,
unsigned long sample_interval,
PS2000_TIME_UNITS time_units,
unsigned long max_samples,
short auto_stop,
unsigned long noOfSamplesPerAggregate,
unsigned long overview_buffer_size

)

This function tells the oscilloscope to start collecting data in fast streaming mode .
It returns immediately without waiting for data to be captured. After calling it, you
should next call ps2000_get_streaming_last_values() to copy the data to your
application's buffer.

Applicability PicoScope 2203, 2204 and 2205 only.

Arguments handle: the handle of the required oscilloscope.

sample_interval: the time interval, in time_units, between

data points.

time_units: the units in which sample_interval is measured.

max_samples: the maximum number of samples that the driver

should store from each channel. Your computer must have enough
physical memory for this many samples, multiplied by the number
of channels in use, multiplied by the number of bytes per sample.

auto_stop: a Boolean to indicate whether streaming should stop

automatically when max_samples is reached. Set to any non-zero

value for TRUE.

noOfSamplesPerAggregate: the number of incoming samples

that the driver will merge together (or aggregate: see aggregation
) to create each value pair passed to the application. The value

must be between 1 and max_samples.

overview_buffer_size: the size of the overview buffers,

temporary buffers used by the driver to store data before passing it
to your application. You can check for overview buffer overruns
using the ps2000_overview_buffer_status() function and adjust
the overview buffer size if necessary. We recommend using an
initial value of 15,000 samples.

Returns 1: if streaming has been enabled correctly.
0: if a problem occurred or a value was out of range.

10

16

57

30

Technical information 35

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.20 ps2000SetAdvTriggerChannelConditions
short ps2000SetAdvTriggerChannelConditions(

short handle,
PS2000_TRIGGER_CONDITIONS *conditions,
short nConditions

)

This function sets up trigger conditions on the scope's inputs. The trigger is defined

by a PS2000_TRIGGER_CONDITIONS structure.

Applicability PicoScope 2205 only

Arguments handle: the handle of the required oscilloscope.

conditions: a pointer to a PS2000_TRIGGER_CONDITIONS
structure specifying the conditions that should be applied to the
current trigger channel. If NULL, triggering is switched off.

nConditions: should be set to 1 if conditions is non-null,

otherwise 0.

Returns 0: if unsuccessful, or if one or more of the arguments are out of
range.
1: if successful.

36

36

PicoScope 2000 Series Programmer's Guide36

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.20.1 PS2000_TRIGGER_CONDITIONS structure

A structure of this type is passed to ps2000SetAdvTriggerChannelConditions() in
the conditions argument to specify the trigger conditions, and is defined as

follows: -

typedef struct tPS2000TriggerConditions
{
 PS2000_TRIGGER_STATE channelA;
 PS2000_TRIGGER_STATE channelB;
 PS2000_TRIGGER_STATE channelC;
 PS2000_TRIGGER_STATE channelD;
 PS2000_TRIGGER_STATE external;
 PS2000_TRIGGER_STATE pulseWidthQualifier;
} PS2000_TRIGGER_CONDITIONS;

Applicability See ps2000SetAdvTriggerChannelConditions() .

Members channelA, channelB: the type of condition that should be

applied to each channel. Use these constants: -
CONDITION_DONT_CARE (0)
CONDITION_TRUE (1)
CONDITION_FALSE (2)

channelC, channelD: not used

external: not used

pulseWidthQualifier: the type of condition to apply to the

pulse width qualifier. Choose from the same list of constants given
under channelA, channelB.

Remarks

The channels that are set to CONDITION_TRUE or CONDITION_FALSE must all meet

their conditions simultaneously to produce a trigger. Channels set to
CONDITION_DONT_CARE are ignored.

The oscilloscope can use only a single input channel (either channel A or channel B)
for the trigger source. Therefore you may define CONDITION_TRUE or

CONDITION_FALSE for only one of these channels at a time. You can, optionally, set

up the pulse width qualifier in combination with one of the input channels.

35

35

Technical information 37

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.21 ps2000SetAdvTriggerChannelDirections
short ps2000SetAdvTriggerChannelDirections(

short handle,
PS2000_THRESHOLD_DIRECTION channelA,
PS2000_THRESHOLD_DIRECTION channelB,
PS2000_THRESHOLD_DIRECTION channelC,
PS2000_THRESHOLD_DIRECTION channelD,
PS2000_THRESHOLD_DIRECTION ext

)

This function sets the direction of the trigger for each channel.

Applicability PicoScope 2205 only

Arguments handle: the handle of the required oscilloscope

channelA, channelB: specify the direction in which the signal

must pass through the threshold to activate the trigger. The
allowable values for a PS2000_THRESHOLD_DIRECTION variable

are listed in the table below.

channelC, channelD: not used

ext: not used

Returns 0: if unsuccessful, or if one or more of the arguments are out of
range.
1: if successful.

PS2000_THRESHOLD_DIRECTION constants

ABOVE for gated triggers: above a threshold
BELOW for gated triggers: below a threshold
RISING for threshold triggers: rising edge
FALLING for threshold triggers: falling edge
RISING_OR_FALLING for threshold triggers: either edge
INSIDE for window-qualified triggers: inside window
OUTSIDE for window-qualified triggers: outside window
ENTER for window triggers: entering the window
EXIT for window triggers: leaving the window
ENTER_OR_EXIT for window triggers: either entering or leaving the window
NONE no trigger

PicoScope 2000 Series Programmer's Guide38

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.22 ps2000SetAdvTriggerChannelProperties
short ps2000SetAdvTriggerChannelProperties(

short handle,
PS2000_TRIGGER_CHANNEL_PROPERTIES *channelProperties,
short nChannelProperties,
long autoTriggerMilliseconds

)

This function is used to enable or disable triggering and set its parameters.

Applicability PicoScope 2205 only

Arguments handle: the handle of the required oscilloscope.

channelProperties: a pointer to a

PS2000_TRIGGER_CHANNEL_PROPERTIES structure describing

the requested properties. If NULL, triggering is switched off.

nChannelProperties: should be set to 1 if

channelProperties is non-null, otherwise 0.

autoTriggerMilliseconds: the time in milliseconds for which

the oscilloscope will wait before collecting data if no trigger event
occurs. If this is set to zero, the oscilloscope will wait indefinitely
for a trigger.

Returns 0: if unsuccessful, or if one or more of the arguments are out of
range.
1: if successful.

39

Technical information 39

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.22.1 PS2000_TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps2000SetAdvTriggerChannelProperties() in
the channelProperties argument to specify the trigger mechanism, and is defined

as follows: -

typedef struct tPS2000TriggerChannelProperties
{

short thresholdMajor;
short thresholdMinor;
unsigned short hysteresis;
short channel;
PS2000_THRESHOLD_MODE thresholdMode;

} PS2000_TRIGGER_CHANNEL_PROPERTIES

Applicability See ps2000SetAdvTriggerChannelProperties()

Members thresholdMajor: the upper threshold at which the trigger event

is to take place. This is scaled in 16-bit ADC counts at the currently
selected range for that channel.

thresholdMinor: the lower threshold at which the trigger event

is to take place. This is scaled in 16-bit ADC counts at the currently
selected range for that channel.

hysteresis: the hysteresis that the trigger has to exceed before

it will fire. It is scaled in 16-bit counts.

channel: the channel to which the properties apply.

thresholdMode: either a level or window trigger. Use one of

these constants:
LEVEL (0)
WINDOW (1)

38

38

PicoScope 2000 Series Programmer's Guide40

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.23 ps2000SetAdvTriggerDelay
short ps2000SetAdvTriggerDelay(

short handle,
unsigned long delay,
float preTriggerDelay

)

This function sets the post-trigger delay, which causes capture to start a defined time
after the trigger event.

Applicability All modes.

PicoScope 2205 only.

Arguments handle: the handle of the required oscilloscope

delay: specifies the delay, as a percentage of the requested

number of data points, between the trigger event and the start of
the block. It should be in the range -100% to +100%. For
example, 0% means that the trigger event is at the first data value
in the block, and -50% means that it is in the middle of the block.

Returns 0: if unsuccessful, or if one or more of the arguments are out of
range.
1: if successful.

Technical information 41

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.24 ps2000_set_channel
short ps2000_set_channel (

short handle,
short channel,
short enabled,
short dc,
short range

)

Specifies if a channel is to be enabled, the AC/DC coupling mode and the input
range.

Applicability All modes

Arguments handle: the handle of the required oscilloscope.

channel: an enumerated type specifying the channel. Use

PS2000_CHANNEL_A (0) or PS2000_CHANNEL_B (1).

enabled: specifies if the channel is active:

TRUE = active

FALSE = inactive

dc: specifies the AC/DC coupling mode:

TRUE: DC coupling

FALSE: AC coupling

range: a code between 1 and 10. See the table below, but note

that each oscilloscope variant supports only a subset of these
ranges.

Returns 0: if unsuccessful, or if one or more of the arguments are out of
range
1: if successful

Code Enumeration Range

1 PS2000_20MV ±20 mV

2 PS2000_50MV ±50 mV

3 PS2000_100MV ±100 mV

4 PS2000_200MV ±200 mV

5 PS2000_500MV ±500 mV

6 PS2000_1V ±1 V

7 PS2000_2V ±2 V

8 PS2000_5V ±5 V

9 PS2000_10V ±10 V

10 PS2000_20V ±20 V

4

4

PicoScope 2000 Series Programmer's Guide42

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.25 ps2000_set_ets
long ps2000_set_ets (

short handle,
short mode,
short ets_cycles,
short ets_interleave

)

This function is used to enable or disable ETS (equivalent time sampling) and to set
the ETS parameters.

Applicability Not PicoScope 2202.

Arguments handle: the handle of the required oscilloscope.

mode:
PS2000_ETS_OFF (0) - disables ETS

PS2000_ETS_FAST (1) - enables ETS and provides

ets_cycles cycles of data, which may contain data from

previously returned cycles

PS2000_ETS_SLOW (2) - enables ETS and provides fresh data

every ets_cycles cycles. PS2000_ETS_SLOW takes longer to

provide each data set, but the data sets are more stable and
unique

ets_cycles: the number of cycles to store. The computer can

then select ets_interleave cycles to give the most uniform

spread of samples. ets_cycles should be between two and five

times the value of ets_interleave.

ets_interleave: the number of ETS interleaves to use. If the

sample time is 20 ns and the interleave 10, the approximate time
per sample will be 2 ns.

Returns The effective sample time in picoseconds, if ETS is enabled.
0: if ETS is disabled or one of the parameters is out of range.

8

Technical information 43

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.26 ps2000_set_light
short ps2000_set_light (

short handle,
short state

)

This function controls the white light that illuminates the probe tip on a handheld
oscilloscope.

Applicability PicoScope 2104 and 2105 handheld oscilloscopes only.

Arguments handle: handle of the oscilloscope

state:
0: light off

1: light on

Returns 0: the function failed, for example if a PicoScope 2000 Series
oscilloscope was not found.
<> 0: success.

PicoScope 2000 Series Programmer's Guide44

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.27 ps2000_set_led
short ps2000_set_led (

short handle,
short state

)

This function turns the LED on the oscilloscope on and off, and controls its colour.

Applicability PicoScope 2104 and 2105 handheld oscilloscopes only.

Arguments handle: handle of the oscilloscope

state:
3: off
1: red
2: green

Returns 0: the function failed, for example if a PicoScope 2000 Series
oscilloscope was not found.
<> 0: success.

Technical information 45

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.28 ps2000SetPulseWidthQualifier
short ps2000SetPulseWidthQualifier(

short handle,
PS2000_PWQ_CONDITIONS *conditions,
short nConditions,
PS2000_THRESHOLD_DIRECTION direction,
unsigned long lower,
unsigned long upper,
PS2000_PULSE_WIDTH_TYPE type

)

This function sets up pulse width qualification, which can be used on its own for pulse
width triggering or combined with other triggering to produce more complex triggers.
The pulse width qualifier is set by defining a conditions structure.

Applicability All modes

PicoScope 2205 only

Arguments handle: the handle of the required oscilloscope.

conditions: a pointer to a PS2000_PWQ_CONDITIONS
structure specifying the conditions that should be applied to the
trigger channel. If conditions is NULL then the pulse width

qualifier is not used.

nConditions: should be set to 1 if conditions is non-null,

otherwise 0.

direction: the direction of the signal required to trigger the

pulse.

lower: the lower limit of the pulse width counter.

upper: the upper limit of the pulse width counter. This parameter

is used only when the type is set to PW_TYPE_IN_RANGE or

PW_TYPE_OUT_OF_RANGE.

type: the pulse width type, one of these constants:
PW_TYPE_NONE do not use the pulse width

qualifier
PW_TYPE_LESS_THAN pulse width less than lower
PW_TYPE_GREATER_THAN pulse width greater than lower
PW_TYPE_IN_RANGE pulse width between lower and

upper
PW_TYPE_OUT_OF_RANGE pulse width not between lower

and upper

Returns 0: if unsuccessful, or if one or more of the arguments are out of
range.
1: if successful.

46

PicoScope 2000 Series Programmer's Guide46

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.28.1 PS2000_PWQ_CONDITIONS structure

A structure of this type is passed to ps2000SetPulseWidthQualifier() in the
conditions argument to specify the pulse-width qualifier conditions, and is defined

as follows: -

typedef struct tPS2000PwqConditions
{
 PS2000_TRIGGER_STATE channelA;
 PS2000_TRIGGER_STATE channelB;
 PS2000_TRIGGER_STATE channelC;
 PS2000_TRIGGER_STATE channelD;
 PS2000_TRIGGER_STATE external;
} PS2000_PWQ_CONDITIONS

Applicability Pulse-width-qualified triggering

Members channelA, channelB: the type of condition that should be

applied to each channel. Choose from these constants:
CONDITION_DONT_CARE (0)
CONDITION_TRUE (1)
CONDITION_FALSE (2)

channelC, channelD: not used

external: not used

45

Technical information 47

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.29 ps2000SetSigGenArbitrary
short ps2000_set_sig_gen_arbitrary (

short handle,
long offsetVoltage,
unsigned long pkToPk,
unsigned long startDeltaPhase,
unsigned long stopDeltaPhase,
unsigned long deltaPhaseIncrement,
unsigned long dwellCount,
unsigned char *arbitraryWaveform,
long arbitraryWaveformSize,
PS2000_SWEEP_TYPE sweepType,
unsigned long sweeps

)

This functions instructs the signal generator to produce an arbitrary waveform.

The arbitrary waveform generator uses direct digital synthesis (DDS). It maintains a
32-bit phase counter that indicates the present location in the waveform. The top 11
bits of the counter are used as an index into a buffer containing the arbitrary
waveform.

The generator steps through the waveform by adding a "delta phase" between 1 and

232-1 to the phase counter every 50 ns. If the delta phase is constant, then the
generator produces a waveform at a constant frequency. It is also possible to sweep
the frequency by continually modifying the delta phase. This is done by setting up a
"delta phase increment" which is added to the delta phase at specified intervals.

PicoScope 2000 Series Programmer's Guide48

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

Applicability All modes

PicoScope 2203, 2204 and 2205 only

Arguments handle: the handle of the required oscilloscope

offsetVoltage: the voltage offset, in microvolts, to be applied

to the waveform

pkToPk: the peak-to-peak voltage, in microvolts, of the waveform

signal

startDeltaPhase: the initial value added to the phase counter

as the generator begins to step through the waveform buffer

stopDeltaPhase: the final value added to the phase counter

before the generator restarts or reverses the sweep

deltaPhaseIncrement: the amount added to the delta phase

value every time the dwellCount period expires. This determines

the amount by which the generator sweeps the output frequency in
each dwell period.

dwellCount: the time, in 50 ns steps, between successive

additions of deltaPhaseIncrement to the delta phase counter.

This determines the rate at which the generator sweeps the output
frequency.

arbitraryWaveform: a pointer to a buffer that holds the

waveform pattern as a set of samples equally spaced in time.

arbitraryWaveformSize: the size of the arbitrary waveform

buffer.

sweepType: determines whether the startDeltaPhase is swept

up to the stopDeltaPhase, or down to it, or repeatedly swept up

and down. Use one of the following values:
UP
DOWN
UPDOWN
DOWNUP

sweeps: the number of times to sweep the frequency after a

trigger event, according to sweepType.

Returns 0: if successful.
Error code: if failed

Technical information 49

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.30 ps2000SetSigGenBuiltIn
short ps2000_set_sig_gen_built_in (

short handle,
long offsetVoltage,
unsigned long pkToPk,
PS2000_WAVE_TYPE waveType,
float startFrequency,
float stopFrequency,
float increment,
float dwellTime,
PS2000_SWEEP_TYPE sweepType,
unsigned long sweeps

)

This function sets up the signal generator to produce a signal from a list of built-in
waveforms. If different start and stop frequencies are specified, the oscilloscope will
sweep either up, down or up and down.

Applicability PicoScope 2203, 2204 and 2205 only

Arguments handle: the handle of the required oscilloscope

offsetVoltage: the voltage offset, in microvolts, to be applied

to the waveform

pkToPk: the peak-to-peak voltage, in microvolts, of the waveform

signal

waveType: the type of waveform to be generated by the

oscilloscope. See the table below.

startFrequency: the frequency at which the signal generator

should begin. For allowable values see ps2000.h.

stopFrequency: the frequency at which the sweep should

reverse direction or return to the start frequency

increment: the amount by which the frequency rises or falls

every dwellTime seconds in sweep mode

dwellTime: the time in seconds between frequency changes in

sweep mode

sweepType: specifies whether the frequency should sweep from

startFrequency to stopFrequency, or in the opposite

direction, or repeatedly reverse direction. Use one of these values
of the enumerated type enPS2000SweepType:

PS2000_UP
PS2000_DOWN
PS2000_UPDOWN
PS2000_DOWNUP

sweeps: the number of times to sweep the frequency

Returns 0: if successful.
Error code: if failed.

50

PicoScope 2000 Series Programmer's Guide50

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

waveType values

PS2000_SINE sine wave
PS2000_SQUARE square wave
PS2000_TRIANGLE triangle wave
PS2000_RAMP_UP rising sawtooth
PS2000_RAMP_DOWN falling sawtooth
PS2000_DC_VOLTAGE DC voltage

Technical information 51

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.31 ps2000_set_trigger
short ps2000_set_trigger (

short handle,
short source,
short threshold,
short direction,
short delay,
short auto_trigger_ms

)

This function is used to enable or disable basic triggering and its parameters.

For oscilloscopes that support advanced triggering, see
ps2000SetAdvTriggerChannelConditions() and related functions.

Applicability Triggering is available in block mode and fast streaming mode
.

Arguments handle, the handle of the required oscilloscope.

source, where to look for a trigger. Use PS2000_CHANNEL_A
(0), PS2000_CHANNEL_B (1) or PS2000_NONE(5). The

number of channels available depends on the oscilloscope.

threshold, the threshold for the trigger event. This is scaled in

16-bit ADC counts at the currently selected range.

direction, use PS2000_RISING (0) or PS2000_FALLING (1)
.

delay, the delay, as a percentage of the requested number of

data points, between the trigger event and the start of the block. It
should be in the range -100% to +100%. Thus, 0% means that the
trigger event is at the first data value in the block, and -50%
means that it is in the middle of the block. If you wish to specify
the delay as a floating-point value, use ps2000_set_trigger2()
instead.

auto_trigger_ms, the delay in milliseconds after which the

oscilloscope will collect samples if no trigger event occurs. If this is
set to zero the oscilloscope will wait for a trigger indefinitely.

Returns 0: if one of the parameters is out of range.
1: if successful.

35

57 10

52

PicoScope 2000 Series Programmer's Guide52

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.32 ps2000_set_trigger2
short ps2000_set_trigger2 (

short handle,
short source,
short threshold,
short direction,
float delay,
short auto_trigger_ms

)

This function is used to enable or disable triggering and its parameters. It has the
same behaviour as ps2000_set_trigger() , except that the delay parameter is a

floating-point value.

For oscilloscopes that support advanced triggering, see
ps2000SetAdvTriggerChannelConditions() and related functions.

Applicability Triggering is available in block mode and fast streaming mode
 only.

Arguments handle, the handle of the required oscilloscope.

source, specifies where to look for a trigger. Use

PS2000_CHANNEL_A (0), PS2000_CHANNEL_B (1) or

PS2000_NONE (5).

threshold, the threshold for the trigger event. This is scaled in

16-bit ADC counts at the currently selected range.

direction, use PS2000_RISING (0) or PS2000_FALLING (1).

delay, specifies the delay, as a percentage of the requested

number of data points, between the trigger event and the start of
the block. It should be in the range -100% to +100%. Thus, 0%
means that the trigger event is at the first data value in the block,
and -50% means that it is in the middle of the block. If you wish
to specify the delay as an integer, use ps2000_set_trigger()
instead.

auto_trigger_ms, the delay in milliseconds after which the

oscilloscope will collect samples if no trigger event occurs. If this is
set to zero the oscilloscope will wait for a trigger indefinitely.

Returns 0: if one of the parameters is out of range.
1: if successful.

51

35

57

10

51

Technical information 53

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

3.5.33 ps2000_stop
short ps2000_stop (

short handle
)

Call this function to stop the oscilloscope sampling data. If this function is called
before a trigger event occurs, the oscilloscope may not contain valid data.

Applicability All modes.

Arguments handle, the handle of the required oscilloscope.

Returns 0: if an invalid handle is passed.
1: if successful.

PicoScope 2000 Series Programmer's Guide54

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.5.34 my_get_overview_buffers
void my_get_overview_buffers (

short **overviewBuffers,
short overflow,
unsigned long triggeredAt,
short triggered,
short auto_stop,
unsigned long nValues

)

This is the callback function in your application that receives data from the driver in
fast streaming mode. You pass a pointer to this function to
ps2000_get_streaming_last_values() , which then calls it back when the data is
ready. Your callback function should do nothing more than copy the data to another
buffer within your application. To maintain the best application performance, the
function should return as quickly as possible without attempting to process or display
the data.

The function name my_get_overview_buffers() is arbitrary. When you write this

function, you can give it any name you wish. The PicoScope driver does not need to
know your function's name, as it refers to it only by the pointer that you pass to
ps2000_get_streaming_last_values() .

For an example of a suitable callback function, see the C sample code included in
your PicoScope installation.

10

16

16

11

Technical information 55

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

Applicability Fast streaming mode only.

PicoScope 2203, 2204 and 2205 only.

Not compatible with ETS triggering - has no effect in ETS mode.

Arguments overviewBuffers, a pointer to a location where

ps2000_get_streaming_last_values() will store a pointer to its
overview buffers that contain the sampled data. The driver
creates the overview buffers when you call
ps2000_run_streaming_ns() to start fast streaming.

overflow, a bit field that indicates whether there has been a

voltage overflow and, if so, on which channel. The bit assignments
are as follows:

Bit 0 - Ch A overflow
Bit 1 - Ch B overflow

triggeredAt, an index into the overview buffers, indicating the

sample at the trigger event. Valid only when triggered is TRUE.

triggered, a Boolean indicating whether a trigger event has

occurred and triggeredAt is valid. Any non-zero value signifies

TRUE.

auto_stop, a Boolean indicating whether streaming data capture

has automatically stopped. Any non-zero value signifies TRUE.

nValues, the number of values in each overview buffer.

Returns nothing

10

8

16

57

34

PicoScope 2000 Series Programmer's Guide56

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

3.6 Driver error codes

Code Name Description

0 PS2000_OK The oscilloscope is functioning correctly.

1 PS2000_MAX_UNITS_OPENED Attempts have been made to open more
than PS2000_MAX_UNITS oscilloscopes.

2 PS2000_MEM_FAIL Not enough memory could be allocated on
the host machine.

3 PS2000_NOT_FOUND An oscilloscope could not be found.

4 PS2000_FW_FAIL Unable to download firmware.

5 PS2000_NOT_RESPONDING The oscilloscope is not responding to
commands from the PC.

6 PS2000_CONFIG_FAIL The configuration information in the
oscilloscope has become corrupt or is
missing.

7 PS2000_OS_NOT_SUPPORTED The operating system is not Windows XP
SP2 or Vista.

Glossary 57

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

4 Glossary
Aggregation. In fast streaming mode , the PicoScope 2000 driver can use a
method called aggregation to reduce the amount of data your application needs to
process. This means that for every block of consecutive samples, it stores only the
minimum and maximum values. You can set the number of samples in each block,
called the aggregation parameter, when you call ps2000_run_streaming_ns() for
real-time capture, and when you call ps2000_get_streaming_values() to obtain
post-processed data.

Analog bandwidth. The input frequency at which the signal amplitude has fallen by
3 dB, or by half the power, from its nominal value.

Block mode. A sampling mode in which the computer prompts the oscilloscope to
collect a block of data into its internal memory before stopping the oscilloscope and
transferring the whole block into computer memory. This is the best mode to use
when the input signal being sampled contains high frequencies. To avoid aliasing
effects, the sampling rate must be greater than twice the maximum frequency in the
input signal.

Buffer size. The size of the oscilloscope's buffer memory. The oscilloscope uses this
to store data temporarily so that it can sample data independently of the speed at
which it can transfer data to the computer.

Coupling mode. This mode selects either AC or DC coupling in the oscilloscope's
input path. Use AC mode for small signals that may be superimposed on a DC level.
Use DC mode for measuring absolute voltage levels. Set the coupling mode using
ps2000_set_channel() .

Driver. A piece of software that controls a hardware device. The driver for the
PicoScope 2000 Series PC Oscilloscopes is supplied in the form of a 32-bit Windows
DLL , which contains functions that you can call from your application.

ETS. Equivalent time sampling. Some PicoScope 2000 Series oscilloscopes can
collect data over a number of cycles of a repetitive waveform to give a higher
effective sampling rate than is possible for a single cycle. Equivalent time sampling
allows the oscilloscope to use faster timebases than those available in real-time mode.

Maximum sampling rate. A figure indicating the maximum number of samples the
oscilloscope is capable of acquiring per second. Maximum sample rates are usually
given in MS/s (megasamples per second) or GS/s (gigasamples per second). The
higher the sampling speed of the oscilloscope, the more accurate the representation
of the high-frequency details in a fast signal.

Oversampling. A method of increasing the effective resolution of a measurement by
sampling faster than the required sampling rate, then averaging the extra samples.
An oversampling factor of four increases the effective resolution by one bit, but this
increased resolution comes at the expense of reducing the maximum sampling rate by
the same factor.

Overview buffer. A buffer in the PC's memory in which the PicoScope 2000 Series
driver temporarily stores data on its way from the oscilloscope to the application's
buffer.

PC Oscilloscope. A virtual instrument consisting of a PicoScope PC Oscilloscope and
a software application.

10

34

17

41

4 13

PicoScope 2000 Series Programmer's Guide58

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

PicoScope 2000 Series. A range of low-cost PC Oscilloscopes that includes the
PicoScope 2202, 2203, 2204 and 2205 two-channel oscilloscopes and the PicoScope
2104 and 2105 handheld oscilloscopes.

PicoScope software. This is an application that accompanies all our PC
Oscilloscopes. Although you do not need it if you are writing your own application,
you should install it anyway, because it includes the drivers that you will need to
control the oscilloscope.

Real-time continuous mode. A sampling mode in which the software repeatedly
requests single samples from the oscilloscope. This mode is suitable for low sampling
rates when you require the latest sample to be displayed as soon as it is captured.

Streaming mode. A sampling mode in which the oscilloscope samples data and
returns it to the computer in an unbroken stream. This mode of operation is suitable
when the input signal being sampled contains only low frequencies.

Timebase. A number that is supplied to the driver to specify a sampling rate for the
oscilloscope. Each oscilloscope model has a different range of possible sampling
frequencies, as specified in the User's Guide for that model.

USB 1.1. Universal Serial Bus (Full Speed). This is a standard port that enables you
to connect external devices to PCs. A typical USB 1.1 port supports a data transfer
rate of 12 megabits per second, and is much faster than an RS-232 or COM port.

USB 2.0. Universal Serial Bus (High Speed). This is a standard port that enables you
to connect external devices to PCs. A typical USB 2.0 port supports a data transfer
rate of 480 megabits per second, and is backwards-compatible with USB 1.1.

Vertical resolution. A value, in bits, that indicates the number of input voltage
levels that the oscilloscope can distinguish. Calculation techniques can improve the
effective resolution.

Voltage range. The range of input voltages that the oscilloscope will measure in a
given mode.

Windows Device Manager. Windows Device Manager is a component of Microsoft
Windows that displays the current hardware configuration of your computer. On
Windows XP or Vista, right-click My Computer, choose Properties, click the
Hardware tab and then the Device Manager button.

Index 59

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

Index

A
AC/DC coupling 4, 41

Advanced triggering 37

Advanged triggering 35, 38, 40, 45

Aggregation 10, 17, 34

Agilent VEE example code 12

Aliasing 5

B
Block mode 5, 7, 8, 32

C
C example code 11

Callback 54

Channel 4, 41, 51, 52

Closing a unit 14

Compatible streaming mode 9

Contact details 2

D
Data acquisition 10

Data logger 1

Delphi example code 12

Driver 4

error codes 56

E
Error codes 56

ETS 8, 42

Example code

Agilent VEE 12

C 11

Dephi 12

Excel 12

LabView 12

Visual Basic 12

Excel macros 12

External trigger 5, 51, 52

F
Fast streaming mode 10

Functions 13

my_get_overview_buffers 54

ps2000_close_unit 14

ps2000_flash_led 15

ps2000_get_streaming_last_values 16

ps2000_get_streaming_values 17

ps2000_get_streaming_values_no_aggregation
 19

ps2000_get_timebase 21

ps2000_get_times_and_values 22

ps2000_get_unit_info 24

ps2000_get_values 25

ps2000_last_button_press 26

ps2000_open_unit 27

ps2000_open_unit_async 28

ps2000_open_unit_progress 29

ps2000_overview_buffer_status 30

ps2000_ready 31

ps2000_run_block 32

ps2000_run_streaming 33

ps2000_run_streaming_ns 34

ps2000_set_channel 41

ps2000_set_ets 42

ps2000_set_led 44

ps2000_set_light 43

ps2000_set_trigger 51

ps2000_set_trigger2 52

ps2000_stop 53

ps2000SetAdvTriggerChannelConditions 35

ps2000SetAdvTriggerChannelDirections 37

ps2000SetAdvTriggerChannelProperties 38

ps2000SetAdvTriggerDelay 40

ps2000SetPulseWidthQualifier 45

ps2000SetSigGenArbitrary 47

ps2000SetSigGenBuiltIn 49

G
Gain 4

Ground clip 3

H
Headlight 43

High-precision scopes 10

I
Illuminated button 3

Input connector 3

Installation 3

L
LabView driver 12

LED 15, 44

PicoScope 2000 Series Programmer's Guide60

Copyright 2006-8 Pico Technology Limited. All rights reserved.ps2000pg.en

Licence conditions 1

Light 3, 43

M
Macros in Excel 12

Memory in scope 7

Multi-unit operation 6

N
Normal mode 9

O
One-shot signal 8

Opening a unit 27, 28, 29

Oversampling 5

Overview buffer 30

P
PC Oscilloscope 1

PicoLog software 1

picopp.inf 4

picopp.sys 4

PicoScope 2000 Series 1, 6, 56

PicoScope software 1, 4, 56

Pre-trigger 5

Probe 3

PS2000_PWQ_CONDITIONS structure 46

PS2000_THRESHOLD_DIRECTION constants 37

PS2000_TRIGGER_CHANNEL_PROPERTIES
structure 39

PS2000_TRIGGER_CONDITIONS structure 36

R
Resolution, vertical 5

S
Sampling modes 6

Sampling rate 8

Signal generator 5, 7

arbitrary waveforms 47

built-in waveforms 49

Spectrum analyser 1

Stopping sampling 53

Streaming mode

compatible 9

fast 10

normal 9

windowed 9

Sweep 5

System requirements, minimum 3

T
Threshold voltage 5

Time interval 5, 8

Timebase 21, 32

Trademarks 2

Triggering 5, 8, 51, 52

U
USB 1

hub 6

USB cable 3

V
Vertical resolution 5

Visual Basic example code 12

W
Warranty 2

Windowed mode 9

61

Copyright 2006-8 Pico Technology Limited. All rights reserved. ps2000pg.en

Pico Technology
James House

Colmworth Business Park
Eaton Socon
ST. NEOTS

Cambridgeshire
PE19 8YP

United Kingdom
Tel: +44 (0) 1480 396 395
Fax: +44 (0) 1480 396 296
Web: www.picotech.com

Copyright 2006-8 Pico Technology Limited. All rights reserved.

ps2000pg.en-1

31.1.08

	Introduction
	Overview
	Licence conditions
	Trademarks
	Warranty
	Company details

	Installation
	Minimum system requirements
	Installation instructions

	Technical information
	Driver
	Programming overview
	Device features
	AC/DC coupling
	Voltage ranges
	Oversampling
	Scaling
	Signal generator
	Triggering
	Combining oscilloscopes
	Sampling modes
	Introduction
	Block mode
	Using block mode
	ETS (Equivalent Time Sampling)
	Using ETS mode
	Streaming mode
	Compatible streaming mode
	Using compatible streaming mode
	Fast streaming mode
	Using fast streaming mode

	Programming examples
	C
	Visual Basic
	Delphi
	Excel
	Agilent VEE
	LabVIEW

	Functions
	Introduction
	ps2000_close_unit
	ps2000_flash_led
	ps2000_get_streaming_last_values
	ps2000_get_streaming_values
	ps2000_get_streaming_values_no_aggregation
	ps2000_get_timebase
	ps2000_get_times_and_values
	ps2000_get_unit_info
	ps2000_get_values
	ps2000_last_button_press
	ps2000_open_unit
	ps2000_open_unit_async
	ps2000_open_unit_progress
	ps2000_overview_buffer_status
	ps2000_ready
	ps2000_run_block
	ps2000_run_streaming
	ps2000_run_streaming_ns
	ps2000SetAdvTriggerChannelConditions
	PS2000_TRIGGER_CONDITIONS structure

	ps2000SetAdvTriggerChannelDirections
	ps2000SetAdvTriggerChannelProperties
	PS2000_TRIGGER_CHANNEL_PROPERTIES structure

	ps2000SetAdvTriggerDelay
	ps2000_set_channel
	ps2000_set_ets
	ps2000_set_light
	ps2000_set_led
	ps2000SetPulseWidthQualifier
	PS2000_PWQ_CONDITIONS structure

	ps2000SetSigGenArbitrary
	ps2000SetSigGenBuiltIn
	ps2000_set_trigger
	ps2000_set_trigger2
	ps2000_stop
	my_get_overview_buffers

	Driver error codes

	Glossary

