PicoScope 3000 Series (A API)
PC Oscilloscopes and MSOs

Programmer's Guide

ps3000apg.en r13
Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

Technology

PicoScope 3000 Series (A API) Programmer's Guide I

Contents

T INEFOAUCLION cevviieeiireiereiireereeireeeeesreeeeessaeeeeeesreeeesssreesesssseeessssssnessssssneessssssesssssssssessssssneessssnneenns 1
T OVEIVIEW eeeeeereeeeeseeete st e s s ess s e s st e e st s e s st s s a e e s s es e s R bR bR R A e s s s e s At e s s e et s enansesenas 1

2 LICENSE AZFEEMENT -ovuvurivrianiaiiasisscias st as s s s ss s ss s R s R R bR 2

2 Programming the PicoScope 3000 Series 0SCIllOSCOPESccvivvviiruiiiuiiniiiiiiiiiiiicicciecrccnecaes 3
1 The Ps3000a dFiVEF «ecerueimiiimitieisisris s s ss s as s as s s s ss s ss bR R b b as s 3

2 MiNIMUM PC FEQUIFEMENLS «.e.cvvveiienriiinitciasiscai s ss s s ss s as s s ss s ss s sa s saes 3

3 USB POFt FEQUIFEMENLS -.oevcvvveeianiunianiasissiseassissesssss s ss s sss s bss s s bbb bbb bs s 4

3 DEVICE TEATUIES .ueuereeeeeereereeireeeeesiteeeessseeeeeeessreesesssreesssssseessssssseessssssseessssssesssssssssessssssnesssssnneesns 5
TPOWEE OPLIONS ceeetttntnt ettt 5

2 VOItage FANGES woeveereveiieiteiie ittt 6

3 MSO digital data cceovereririiienire s sttt 6

4 MSO digital CONNECLON ..ev.vvvvevrnivririitiisisaisse s s s s 7
BTHEEEHNG oA 7

6 THMEDASES cereeeereeueireietsieie sttt ettt st ARt A bRttt ettt et et sees 8

7 SAMPIING MOAES weovvrieriiiitiite sttt 9

1 BIOCK IOA@ c-vreeseereremesrenemetstntiet sttt 10

2 Rapid block mode w12

3 ETS (EQUIVAIENT TH@ SAIMPIINE) «-oveveeeessessssssssssssssssmmsssssssmssssssssssesssssssssssssssss s 17

4 streaming e e [T 19

5 RELFIEVING STOP@U @@ «-----++-+sssesesesessessesesesemeee 20

8 Combining several 0SCHIOSCOPES .- wwrurwruririiriisrisisiss s s ss s sa s sa s snas 20

4 AP] FUNCLIONS e1eetteeeeeieeeeeecieeereesnreeeesseeeeeseseeesesssseeeessssseessssssseesssssseessssnsesesssssssessssssseessssnseesssns 21
1 ps3000aBlockReady (CallDACK) - ..vuvvuvrirrrimimirinimiiieiscais s ss s ss s s ns 23

2 ps30002ChangePOWEISOUFCE «....vvuvviiriisiisiisinisisiss s s s s s s ss s s ss s s s sa s ss s sa s ssnas 24

3 PS30002CIOSEURIL «vvververresrecrreermeersesmecesssseesssessesssssseesssssessssssessssssesssssssesssssnessssssessssessessssssesssssnesssssnesssssnes 25

4 PS30002CUITENtPOWEFSOUICE -.vvvvvvrsississississsisss s s s s s ss s ss s s s s s ss s ss s s sn s s 26

5 ps3000aDataReady (CallDack) «.-..wuewmrrrrimrrrisimiiisississsss s ss s 27

6 PS3000aENUMEIrAateUNIts . .eovrveuerrerirentniiieintnteent sttt sttt sttt st s ettt s st s et s b s s et et e sasessns 28

7 PS3000aFIashLed -...cocveniumieiiiiiiiiie s 29

8 PS30002GEtANAIOGUEOFFSEL -..rvcvverrecrreereerrresmeerssseessesmesessssessssssssssssssssaseesssssssssssnesssssnsesssssmesssssnesssssessses 30

9 ps3000aGetChannellnformationcocoeeririieriniieiie st 31

10 ps30002GetMaxDOWNSAMPIERALIO -....cvucvuuivriumimriiniaiiiiaiiciiiseae i ss s sa s sasaeses 32

11 ps3000aGetMaxEtsValUues . .ococeeuermiiiiiiiiiiiiicnit et 33

12 PS30002GEtMAXSEGMENLS --cvvvrvvvrvrsrursrissrassrasssasssassassss s ass s ass s 34

13 Ps30002GEtNOOFCAPLUIES -.o-vvvvvrrrrrirnrrsrissisrisissass s s s s ss s sas s ass s ass s b s ss s ss s sn s nns 35

14 ps3000aGetNOOTProcesSEdCAPLUIES . vovruerrrtrueiririiinisietsisetet ettt sttt ae et st e et ssa e s sbans 36

15 ps3000aGetStreamingLateStVAlUEScwwrerurrumrusrissirsassassassss s ssss s asssssssassssss s s ssssssssssssees 37

16 PS30002GELTIMEDASE «vvvvrerrvernerrresmemrisrisssensessssssecsssasesesessessssssessssssaessssssessssssesssssssssssssesssssnesssssnesssssneces 38

17 PS30002GELTIMEDASE2 --vvrevvvereecrresmemresrisssansessssssessssasessssssessssssesssssseesssssnessssssesssssssessssssesssssnesssssnesssssnees 39

18 ps3000aGetTrGZerINfOBUIKcvvunrvrrrirrriniuscisciscis s assees 40

19 PS3000aGetTrigEerTIMEORFSEt . vvvernerreereeriernerrsisnecessasesssesmessssssesssssssesssssssssssnesssssssessssssecssssneesssssnesssssnes 41

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

Contents

20 ps3000aGetTriggerTimeORfSEthacooeureurmiiniiiiiiniiititeitt ettt e 42
21 Ps3000aGetUNItINFO . ovovevereririiiieieietetete ettt s et 43
22 PS3000aGELVAIUES - -eovenrrurrreniriintititintetieete sttt sttt sttt sttt ettt sttt e et et saeas 44

T DIOWNSAIMPIING OIS -+ 45
23 PS3000aGEtVAlUESASYNC - ovevvrmeeretrintentiintetitetet ettt sttt sttt sttt sttt st ettt et st et st e e st et saees 46
24 ps3000aGetValuesBulkccccovueiiiiiiiiiniiniiiiiiiiiiiiiiii e 47
25 ps3000aGetValuesOVerlappedcoeetririentiiniiiiinietscstet ettt sttt saees 48
26 ps3000aGetValuesOVerlappedBulk -cocoeviririeiririininiiiiintnieetnstssses sttt ssns 49
27 ps3000aGetValuesTriggerTimeOFfSetBulkcccvurieiniriiininiiinininitnieetnseset st 50
28 ps3000aGetValuesTriggerTimeOffsetBulkbd -........cc.oovvrmimininiiininiiiiniiiiiceet e 51
29 Ps3000aHOIAOR c-oviviriiiiiiiiiitee sttt 52
30 PS3000AISREAAY -ceeveererreereemenentruetrtetetntet ettt ettt ettt sttt ettt sttt 53
31 ps3000alsTriggerOrPulseWidthQualifierEnabled -.......cocoouemeininiininiiiiiiiiniiiiiiciiceenennes 54
32 ps3000aMaximUMVALUE c.ceueevetruinrentiintetiiet ettt sttt ettt sttt 55
33 PS3000aMEmMOrySEZMENLES - ceveueteueutrtrsetnteieutstetetstes ettt sttt sttt sttt sttt sttt 56
34 ps3000aMiniMUuMValue ..coocoviiiiiiiiiiiiiiiiiit e 57
35 ps3000aNOOFStreamMINGValUES «..o.coveierertiiniintiintititetet ettt ettt 58
36 PS3000a0PENURIL - veveutetetrietitiirtetetet ettt 59
37 PS3000a0PENURNILASYNC -o-veueeretruinrentiintentitetestetet ettt ettt ettt sttt sttt st st b et e b et e 60
38 PS3000a0PENURNItPIOGress - - coueueutrerrestntrsetstnietntetetstetetst sttt sttt sttt sttt sttt st b s 61
39 PS3000aPINGURIL «-ovvovvvevrneriricisiciascisi s ssss s sse s ssss s ss s R R 62
40 ps3000aRUNBIOCK «-.covvemiimiiiiiiiiiiiiiiiiitiitit ittt 63
41 ps3000aRUNSLIEAMING «-coovieiiiiiiiiiiii 65
42 ps3000aSetBandWidthFilterc.ccoooiiiiiiiiiniiiiiiiiiiiiiii e 67
43 PS3000aSEtCRANNEL - cveutrueeteiriintetiitetet ettt sttt sttt st 68
44 ps3000aSetDataBuffercc.cccovvuiiiiiiiiiiiiiiiii e 69
45 ps3000aSetDataBuffersccoccooeiiiiiiiiiiiiiiiiiiiit e 70
46 Ps3000aSetDIGItalPOrt - .. cueeetetetetrtrteteteteieet ettt 71
47 ps3000aSEtEts «cooioiniiiiiiii e 72
48 ps3000aSetEtsTimeBuUffer . ..o 73
49 ps3000aSetEtsTimeBUSfersccccoiviiiiiiiiiiiiiiiitt e 74
50 ps3000aSetNOOFCAPLUIES - vetruerteutrrentitriintitriet ettt sttt ettt sttt st sttt 75
51 ps3000aSetPulseWidthDigitalPOrtPropertiescocovertriririniienininiiinieestnsen sttt 76
52 ps3000aSetPulseWidthQUalifiercocootruimtiiriiiiie e 77

1 PS3000A_PWQ_CONDITIONS SEEUCLUF@ -+ teeesseeesssssssesssssssesssssssssssssssssssssessissssesssssssesssssssss s sssssses 79
53 ps3000aSetPulseWidthQUAalIfIerV2ccovviiiiiniiiiiiiiiicnte st 80

1 PS3000A_PWQ_CONDITIONS_V2 StIUCLUFE -+ steesssseesssssssesssssssesssssssssssssssisssssesssssssessssssssssssssssssssssssssssssses 82
54 ps3000aSetSigGenArbitrary - ...coocoviiiiiiiiiiiiiiiiiiiiti s 83

I N T e L i ey Ly OO 86
55 Ps3000aSetSigGenBuUiltIn .o cocoveveieieiiiieieiiete e 87
56 ps3000aSetSigGenBuiltinV2 -c..c.cvvviiiiiiiiiiiiiiiiiiiictttet e 90
57 ps3000aSetSigGenPropertieSArbItrarycococeeviiiiniiininiiiine s 91
58 ps3000aSetSigGenPropertiesBuiltln «......coouemeeiiiiiniii e 92
59 ps3000aSetSimpleTrigger - ococreeteririntiiiititret ettt e 93
60 ps3000aSetTriggerChannelConditionscoevtrueiririeniniiiiintnieee sttt 94

1 PS3000A_TRIGGER_CONDITIONS StEUCLUF@ ++:++srrsesesssssessssssesssssssssssissssississees 95

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide i

61 ps30002SetTriggerChannelCONItIONSV2cccwwwwweeeeesssmmmmmaeeesessssssssssssssssssssmmasssesessssssssssssssssssssssnnsseees 96
1 PS3000A_TRIGGER_CONDITIONS_V?2 StrUCLUFE ----rsseveeesssseessssssssssssmsssssssssss s sssssss s 97

62 ps3000aSetTriggerChannelDireCtionscocerertrueirinieniniiieintseentss sttt sans 98
63 PS30002SetTriggerChannelPrOPErties -« i-rrrwsseessssssmmsssnesesessesssssssssssssssmmmmanssssssssssssssssssssssssssnsssses 99
1 PS3000A_TRIGGER_CHANNEL_PROPERTIES StruCtUure - sesssseeessseesssseemsssmimsssiisstiissssnissnissssnssees 100

64 ps3000aSetTriggerDelay ..o 101
65 ps3000aSetTriggerDigitalPOrtProperties «.......ccovuririririntniriinisetntsetese sttt ss 102
1 PS3000A_DIGITAL_CHANNEL_DIRECTIONS StruCtUure = - teeesssseessssssesssssssessssssssssssssssssssssmssssssseeess 103

66 ps3000aSigGenArbitraryMinMaxValues «.......cccouvuruiririninininiinininetniseeset sttt sse s 104
67 PS30002SigGENFreqUENCYTOPRASE --vvcervrsesssremrererersessssssssessssssssasasssssssssssessssssssssssssnsasssssssssssssssssssssssssens 105
68 PS30002SiGENSOFWArECONLION --vvvvvevrssssssssseeesssessessssssssssssssssssssssssssssessessnns 106
69 PS3000QSLOP -oovvveerreereseesmmnresssssaeessssssseesssssssseeessssssseeessssssaessssssseeesessssseesessssseesssesssseessessssseesssssessesees 107
70 ps300025treamingReady (CAlIDACK) ... s ueererrererrsrmsseesssssmmmmnnsesessssssssssssssssssssssnsenssesessssssssssssssesessens 108
5 Wrapper fUNCLIONScociivuiiiiiiiiiiiiiiiiiicicntctcicr et ae st cae s et esaessnesanens 109
1 Using the wrapper functions for streaming data Capture -.......cococeeieeninieininieieninieentneest e 109
2 AULOSEOPPEA coreeeiiiinieete ettt b b bR R s e 111
3 AVAIIADIEDAtA coeoeveririee et e e s e b e b b a st sat et et en 112
4 BlockQallDack ceeeiiiiiee e e e e s e e e a s e e s e e s st s e e s st e e e s a e eens 113
5 ClearTriggerReady - . o oeeeeeiiiiinintetstss sttt ettt a s 114
6 decrementDEVICECOUNL . ccveeveruerieriiriiiiitrteterceee sttt sr e sttt et e sesse s st et st e b et esaesnesssenesasensens 115
7 ZEtDEVICECOUNE vovereiiiiinieieteteteet ettt ettt ettt b s bbb e b e e s e s s et et s b e b st e sasasans 116
8 GetStreamingLatestValUuescoviririiinininiinieietnise ettt sttt ss 117
 FHEWWIAPUNILINGO «-1xeerreeeeessssssaeseseesssssssaessssesssssssssessssesssssssssees e ses s e e R R e R 118
TOISREAdY ot aes 119
11 ISTHZEEIREAAY -vevvevveveernecereeessmenerssassseessssssaesssssssssesssssssseessssssssessssssssessesssssassesssssesesssssssessssssssesssssssnnes 120
12 resetNextDeVICeINdEX - ciceeeeiiiiiiiitititictctee ettt bbb e b e ean s nnen 121
T3 RUNBIOCK e s e a bR en 122
14 setAppANdDIrIiverBuUffersccoooiiiiiiiiiiiiiiiiiiiii 123
15 setMaxMinAppANADIIVErBUFFErs -covvueeririiiiniiitninitnieetrs sttt 124
16 setApPANADIIVErDIGIBUFfersccovvueuiririiiiiriiiinicetrts st 125
17 setMaxMinAppAndDriverDigiBuffersc.coeoerrieininiiininiiein e 126
18 SEtChANNEICOUNL .-.vvevvieiiniiiiiititt e e s e b b e bbb sasens e st s 127
19 SEEDIGILAIPOItCOUNL «vvvvvvveerreessseerresessseeesseessaeesssssssessssssseesssssssessssssssaessesssssaessssssssessssssssssssssssnesssssssnnes 128
20 setEnabledChannels . ..cccoooviiiiiiimiiiiiiiiiiiiiiiiiinirriirrr e s e e e s e b e s e e e e nes 129
21 SELENADIEADIGILAIPOILS --v---sesseeeereeeessssaseeeressesssssssessssssssssssesssessssssssssssssessssssssasesssssssssssssssssssssssssnsnnsssees 130
22 SetPulseWidthQuUalifier «..coovvviiiiiiiiiiiiiiiiii e 131
23 SetPulseWidthQUAlIfIErV2 coceeeeeeeeeeeeeeeeeeeeeeeeeereeerererere e ee e e e e s e e e e e e esesesesesesesesesens 132
24 SEUTHIGZEICONMItIONS -rrvvvvssssseeeereesessssaseseeesssssssssssssessssssssssessseesssssssssessssesssssssssesssssssssssssassssssssssssnasasesees 133
25 SEtTrIGZEIrCONMItIONSV2 -correrrerreeeeesssssssmansaseesessssssssssssssssssssssasssesessesessesssssssssssssmnssssssssssssssssssssssssssens 135
26 SEUTHIGEEIPIOPEITIES r-vrvvvrssssseeerreesessssasssesesssssssssssssesssssssssaessseesssssssssessssesssssssssesssssssssssssssssssssssssssssasssees 136
27 SErEAMINGCAIIDACK -.vevevvveververeeeeneiassirissasassssassssssesassse s s sss s sass s sas s sss s sas s sas s sons 137
6 Programming €XamPIEScovuiiviiiiiiniiniiiiiiiieiicnet ittt sae s ae s ne 138
1O 138
2 CH ettt e s e bbb bbb b st sttt eaesae s st et sa b et ens 138

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

Contents

K 3 =) [N 139
FLADVIEW s e e b e e 139
L N 1 - - TR 141
6 VB.NET e e s bbb b as 142

T NUMEEIC data tYPes «-eeoeereeereiereieeriitiitststs sttt ettt b st b e s e ettt et e b et et e s asasasasnanans 143
2 Enumerated types, constants and StFUCLUIES «...eveverereiiririninininieietsssettte sttt st st s s s sans 143
3 DFIVEF STAtUS COUES - orvverniiuiiniiiiiitiiiiiit ettt bbb bbbt e b s b s b e bs b e s b e s be s b e s ab e abeaseasenbees 143
B GIOSSArY e bbb bbb bbb bbbt ese 148

Index eeeeettttteeeeseeeeertrttnn———eeeeettttarntaaeeeeerraratrraaeteeerrtsstnrrnnseeeerrsrrrsssreseeeenrrrsrnrrnnseseesrrrssnnrnnne | D]

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 1

1 Introduction

1.1 Overview

The PicoScope 3000A, 3000B and 3000D Series Oscilloscopes and MSOs from

Pico Technology are a range of high-specification, real-time measuring instruments
that connect to the USB port of your computer. The series covers various options of
portability, deep memory, fast sampling rates and high bandwidth, making it a highly
versatile range that suits a wide range of applications. The range includes Hi-Speed
USB 2.0 and SuperSpeed USB 3.0 devices.

This manual explains how to use the ps3000a API (application programming interface)
functions to develop your own programs to collect and analyze data from these
oscilloscopes.

The information in this manual applies to the following oscilloscopes:

PicoScope 3203D to 3206D
PicoScope 3404D to 3406D

USB 3.0 2-channel and 4-channel oscilloscopes

3000D models have an arbitrary waveform generator.

PicoScope 3204D MSO to 3206D MSO
PicoScope 3404D MSO to 3406D MSO

USB 3.0 mixed-signal oscilloscopes

3000D MSO models have 2 or 4 analog inputs, 16 digital
inputs and an arbitrary waveform generator.

PicoScope 3204A/B to 3207A/B
High-speed 2-channel oscilloscopes (discontinued)

3000A Series models have a function generator; 3000B
Series models have an arbitrary waveform generator.

PicoScope 3204 MSO to 3206 MSO
USB 2.0 mixed-signal oscilloscopes (discontinued)

3000 MSO models have 2 or 4 analog inputs, 16 digital
inputs and an arbitrary waveform generator.

PicoScope 3404A/B to 3406A/B
High-speed 4-channel oscilloscopes (discontinued)

3000A Series models have a function generator; 3000B
Series models have an arbitrary waveform generator.

For information on any of the above oscilloscopes, refer to the data sheets on our
website.

For programming information on older PicoScope 3000 Series oscilloscopes and MSOs
not listed above, refer to the PicoScope 3000 Series Programmer's Guide available
from picotech.com.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

http://www.picotech.com

Introduction

1.2

License agreement

Grant of license. The material contained in this release is licensed, not sold. Pico
Technology Limited ('Pico') grants a license to the person who installs this software,
subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have
been informed of and agree to abide by these conditions.

Usage. The software in this release is for use only with Pico products or with data
collected using Pico products.

Copyright. The software in this release is for use only with Pico products or with data
collected using Pico products. You may copy and distribute the SDK without restriction,
as long as you do not remove any Pico Technology copyright statements. The example
programs in the SDK may be modified, copied and distributed for the purpose of
developing programs to collect data using Pico products.

Liability. Pico and its agents shall not be liable for any loss or damage, howsoever
caused, related to the use of Pico equipment or software, unless excluded by statute.

Fitness for purpose. No two applications are the same, so Pico cannot guarantee
that its equipment or software is suitable for a given application. It is therefore the
user's responsibility to ensure that the product is suitable for the user's application.

Mission-critical applications. Because the software runs on a computer that may be
running other software products, and may be subject to interference from these other
products, this license specifically excludes usage in 'mission-critical' applications, for
example life-support systems.

Viruses. This software was continuously monitored for viruses during production.
However, the user is responsible for virus checking the software once it is installed.

Support. No software is ever error-free, but if you are dissatisfied with the
performance of this software, please contact our technical support staff.

Upgrades. We provide upgrades, free of charge, from our web site at
www.picotech.com. We reserve the right to charge for updates or replacements sent
out on physical media.

Trademarks. Windows is a trademark or registered trademark of Microsoft
Corporation. Pico Technology Limited and PicoScope are internationally registered
trademarks.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 3

2

2.1

2.2

Programming the PicoScope 3000 Series

oscilloscopes

The ps3000a. dl | dynamic link library (DLL) in the SDK allows you to program any
supported oscilloscope using standard C function calls.

A typical program for capturing data consists of the following steps:

Open the scope unit.

Set up the input channels with the required voltage ranges and coupling type.
Set up triggering.

Start capturing data. (See Sampling modes, where programming is discussed in
more detail.)

Wait until the scope unit is ready.

Stop capturing data.

Copy data to a buffer.

Close the scope unit.

® 666

® 666

Numerous example programs are included in the SDK. These demonstrate how to use
the functions of the driver software in each of the modes available.

The ps3000a driver

Your application will communicate with a PicoScope driver called ps3000a. dl | . This
driver is used by all the PicoScopes supported by the ps3000a API. The driver exports
the ps3000a function definitions in standard C format, but this does not limit you to
programming in C: you can use the API with any programming language that supports
standard C calls.

The API driver depends on another DLL, Pi col pp. dl |, and a low-level driver,

W nUsb. sys. These are installed by the SDK when you plug the oscilloscope into the
computer for the first time. Your application does not need to call these drivers
directly.

Minimum PC requirements

To ensure that your PicoScope operates correctly, you must have a computer with at
least the minimum system requirements to run one of the supported operating
systems, as shown in the following table. The performance of the oscilloscope will be
better with a more powerful PC, and will benefit from a multicore processor.

Item Specification
Windows XP SP3, Vista, 7 or 8 (32-bit or 64-bit)

Operating system Or Linux

Or 0S X (Mac)
Processor
Memory As required by operating system
Free disk space
Ports USB 2.0 port

Using with custom applications
Drivers are available for the operating systems mentioned above.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

4 Programming the PicoScope 3000 Series oscilloscopes

2.3 USB port requirements

The ps3000a driver offers four different methods of recording data, all of which
support both USB 1.1, USB 2.0, and USB 3.0 connections. The USB 2.0 oscilloscopes
are Hi-Speed devices, so transfer rate will not increase by using USB 3.0, but it will
decrease when using USB 1.1. The USB 3.0 oscilloscopes are SuperSpeed devices, so
should be used with a USB 3.0 port for optimal performance.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 5

3

3.1

Device features

Power options

PicoScope 3000 Series oscilloscopes can be powered in several ways depending on the
model:

USB 2.0
USB 2.0 double- USB 3.0 USB 2.0
cable + AC
cable headed cable
adapter
cable

PicoScope 3200A & 3200B
2-channel USB 2.0 oscilloscopes v
PicoScope 3400A & 3400B
4-channel USB 2.0 oscilloscopes v 4
PicoScope 3207A & 3207B
2-channel USB 3.0 oscilloscopes
+
PicoScope 3200D MSO
2-channel USB 3.0 MSOs 4 4
+

PicoScope 3200D
2-channel USB 3.0 oscilloscopes

PicoScope 3400D MSO
4-channel USB 3.0 MSOs

+ v v v
PicoScope 3400D

4-channel USB 3.0 oscilloscopes

Data retention

If the power source is changed (AC adapter connected or disconnected) while the
oscilloscope is in operation, the oscilloscope will restart automatically and any unsaved
data may be lost.

API functions
The following functions support the flexible power feature:

® ps3000aChangePowerSource()
® ps3000aCurrentPowerSource()

If you want the device to run on USB power only, instruct the driver by calling
ps3000aChangePowerSource() after calling ps3000aOpenUnit(). If ps3000aOpenUnit()
is called without the power supply connected, the driver returns

Pl CO_ POAER_SUPPLY_NOT_CONNECTED. If the supply is connected or disconnected
during use, the driver will return the relevant status code and you must then call
ps3000aChangePowerSource() to continue running the scope. For USB 3.0 scopes, the
driver will return Pl CO_USB3_0_DEVI CE_NON_USB3_0_PORT if the device is plugged
into a non-USB 3.0 port.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

6 Device features

3.2 Voltage ranges

You can set a device input channel to any voltage range from £50 mV to £20 V with
ps3000aSetChannel(). Each sample is scaled to 16 bits so that the values returned to
your application are as follows:

Function Voltage Value returned
decimal hex
ps3000aMinimumValue() minimum -32 512 8100
zero 0 0000
ps3000aMaximumValue() maximum 32512 7F00

3.3 MSO digital data

Applicability: mixed-signal oscilloscope (MSO) devices only

A PicoScope MSO has two 8-bit digital ports—PORTO0 and PORT1—making a total of 16
digital channels.

The data from each port is returned in a separate buffer that is set up by the
ps3000aSetDataBuffer() and ps3000aSetDataBuffers() functions. For compatibility
with the analog channels, each buffer is an array of 16-bit words. The 8-bit port data
occupies the lower 8 bits of the word, and the upper 8 bits of the word are undefined.

PORT1 buffer PORTO buffer
Sample, [XXXXXXXX,D15...D8], [XXXXXXXX,D7...D0],

Sample, ; | [XXXXXXXX,D15...D8], , | [XXXXXXXX,D7...D0], ,

Retrieving stored digital data

The following C code snippet shows how to combine data from the two 8-bit ports into
a single 16-bit word, and then how to extract individual bits from the 16-bit word.

/1 Mask Port 1 values to get lower 8 bits
portVal ue = Ox00ff & appDigiBuffers[2][i];

/1 Shift by 8 bits to place in upper 8 bits of 16-bit word
port Val ue <<= 8;

/1 Mask Port O values to get lower 8 bits
portVal ue | = Ox00ff & appDigi Buffers[O][i];

for (bit = 0; bit < 16; bit++)
/1 Shift value (32768 - binary 1000 0000 0000 0000), AND with
value to get 1 // or 0 for channel
/1 Oder will be D15 to D8, then D7 to DO

bitVal ue = (0x8000 >> bit) & portValue? 1 : O;
}

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

3.4 MSO digital connector

The PicoScope 3000 Series and 3000D Series MSOs have a digital input connector. The
following pinout of the 20-pin IDC header plug is drawn as you look at the front panel

of the device.

Do

D1 D9 D4 D2
D12 | D1D_| ps | D3 | DI

EREREEEEE

D15 ‘ DM_} D13 ‘ GND ‘ GND ‘
GND GND D7 D6 D5

3.5 Triggering
PicoScope oscilloscopes can either start collecting data immediately, or be
programmed to wait for a trigger event to occur. In both cases you need to use the
trigger function ps3000aSetSimpleTrigger(), which in turn calls
ps3000aSetTriggerChannelConditions(), ps3000aSetTriggerChannelDirections() and
ps3000aSetTriggerChannelProperties() (these can also be called individually, rather
than using ps3000aSetSimpleTrigger()). A trigger event can occur when one of the
signal or trigger input channels crosses a threshold voltage on either a rising or a

falling edge.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.enr13

8 Device features

3.6 Timebases

The API allows you to select any of 232 different timebases. The timebases allow slow
enough sampling in block mode to overlap the streaming sample intervals, so that you
can make a smooth transition between block mode and streaming mode. Calculate the
timebase using the ps3000aGetTimebase() call.

PicoScope 3000A and 3000B Series 2-Channel USB 2.0 Oscilloscopes

Timebase Sample interval formula Sample |Notes
interval
0 2 ns Only one channel enabled
1 2timebase / 500,000,000 4 ns
2 8 ns
3 16 ns
(timebase-2) / 62,500,000
232_1 ~ 68.7 s
PicoScope 3000 Series USB 2.0 MSOs
Timebase Sample interval formula Sample |Notes
interval
No more than one analog
0 stimebase / 500 000,000 2ns ggfpgﬁggrecéone digital
1 4 ns
2 8 ns
(timebase-1) / 125,000,000
2321 ~ 34.4s

PicoScope 3000A and 3000B Series 4-Channel USB 2.0 Oscilloscopes
PicoScope 3207A and 3207B USB 3.0 Oscilloscopes
PicoScope 3000D Series USB 3.0 Oscilloscopes and MSOs

Timebase Sample interval formula Sample |Notes
interval
Only one analog channel
0 1ns enabled
No more than two analog
1 2ns channels or digital ports

timeb
2timebase / 1 000,000,000 enabled

No more than four analog
2 4 ns channels or digital ports
enabled

3 8 ns
(timebase-2) / 125,000,000

232_1 ~ 34,4 s

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 9

3.7

Sampling modes
PicoScope oscilloscopes can run in various sampling modes:

® Block mode. In this mode, the scope stores data in its buffer memory and then
transfers it to the PC. When the data has been collected it is possible to examine
the data, with an optional downsampling factor. The data is lost when a new
capture is started, the settings are changed, or the scope is powered down.

® ETS mode. In this mode, it is possible to increase the effective sampling rate of the
scope when capturing repetitive signals. It is a modified form of block mode.

® Rapid block mode. This is a variant of block mode that allows you to capture more
than one waveform at a time with a minimum of delay between captures. You can
use downsampling in this mode if you wish.

® Streaming mode. In this mode, data is passed directly to the PC without being
stored in the scope's buffer memory. This enables long periods of slow data
collection for chart recorder and data-logging applications. Streaming mode
supports downsampling and triggering, while providing fast streaming at up these
rates:

Max. sampling rate (min. sample time)
Number of active

channels or ports* USB 2.0 USB 3.0

1 31.25 MS/s (32 ns) 125 MS/s (8 ns)

2 15.625 MS/s (64 ns) 62.5 MS/s (16 ns)

3or4 7.8125 MS/s (128 ns) 31.25 MS/s (32 ns)
More than 4 15.625 MS/s (64 ns)

*Note: A port is a block of 8 digital channels, available on MSOs only.

In all sampling modes, the driver returns data asynchronously using a callback. This is
a call to one of the functions in your own application. When you request data from the
scope, you pass to the driver a pointer to your callback function. When the driver has
written the data to your buffer, it makes a callback (calls your function) to signal that
the data is ready. The callback function then signals to the application that the data is
available.

Because the callback is called asynchronously from the rest of your application, in a
separate thread, you must ensure that it does not corrupt any global variables while it
runs.

In programming environments not supporting callbacks, you may poll the driver in
block mode or use one of the wrapper functions provided.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

10

Device features

3.7.1

Block mode

In block mode, the computer prompts the oscilloscope to collect a block of data into
its internal memory. When the oscilloscope has collected the whole block, it signals
that it is ready and then transfers the whole block to the computer's memory through
the USB port.

2

Block size. The maximum number of values depends upon the size of the
oscilloscope's memory. The memory buffer is shared between the enabled channels,
so if two channels are enabled, each receives half the memory. If three or four
channels are enabled, each receives a quarter of the memory. These calculations
are handled transparently by the driver. The block size also depends on the number
of memory segments in use (see ps3000aMemorySegments()).

For the PicoScope 3000 and 3000D Series MSOs, the memory is shared between
the digital ports and analog channels. If one or more analog channels is enabled at
the same time as one or more digital ports, the memory per channel is one quarter
of the buffer size.

Sampling rate. A ps3000a oscilloscope can sample at a number of different rates
according to the selected timebase and the combination of channels that are
enabled. See the PicoScope 3000 Series User's Guide for the specifications that
apply to your scope model.

Setup time. The driver normally performs a number of setup operations, which can
take up to 50 milliseconds, before collecting each block of data. If you need to
collect data with the minimum time interval between blocks, use rapid block mode
and avoid calling setup functions between calls to ps3000aRunBlock(),
ps3000aStop() and ps3000aGetValues().

Downsampling. When the data has been collected, you can set an optional
downsampling factor and examine the data. Downsampling is a process that

reduces the amount of data by combining adjacent samples. It is useful for zooming
in and out of the data without having to repeatedly transfer the entire contents of
the scope's buffer to the PC.

Memory segmentation. The scope's internal memory can be divided into
segments so that you can capture several waveforms in succession. Configure this
using ps3000aMemorySegments().

Data retention. The data is lost when a new run is started in the same segment,
the settings are changed, or the scope is powered down or the power source is
changed (for flexible power devices).

See Using block mode for programming details.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 1

3.7.1.1

3.7.1.2

Using block mode

This is the general procedure for reading and displaying data in block mode using a
single memory segment:

1. Open the oscilloscope using ps3000a0OpenUnit().

2. Select channel ranges and AC/DC coupling using ps3000aSetChannel(). All

channels are enabled by default, so if you wish to allocate the buffer memory to

fewer channels, you must disable those that are not required.

[MSOs only] Set the digital port using ps3000aSetDigitalPort().

Using ps3000aGetTimebase, select timebases until the required nanoseconds per

sample is located.

5. Use the trigger setup functions ps3000aSetTriggerChannelConditionsV2(),
ps3000aSetTriggerChannelDirections() and
ps3000aSetTriggerChannelProperties() to set up the trigger if required.

6. [MSOs only] Use the trigger setup functions
ps3000aSetTriggerDigitalPortProperties() to set up the digital trigger if required.

7. Start the oscilloscope running using ps3000aRunBlock().

8. Wait until the oscilloscope is ready using the ps3000aBlockReady() callback (or
poll using ps3000alsReady()).

9. Use ps3000aSetDataBuffer() to tell the driver where your memory buffer is.

10. Transfer the block of data from the oscilloscope using ps3000aGetValues().

11. Display the data.

12. Stop the oscilloscope using ps3000aStop().

13. Repeat steps 7 to 11.

W

 —
Application ‘
{ps3000a0penUnit } >
£53000aSetChannel)‘/ Set up device

@s3000aGetTimebase
ps3000aSetETS

(set trigger functions

Start collection
v

................... Data ready

G)sBOOOa RunBlock

Q\pp: ps3000aBlockReady)4

Gs3000a$etDataBuffer)—»
Gs3000aGetValues)—P

Data processed

14. Request new views of stored data using different downsampling parameters: see
Retrieving stored data.

Asynchronous calls in block mode

ps3000aGetValues() may take a long time to complete if a large amount of data is

being collected. For example, it can take 3.5 seconds to retrieve the full 128 Msamples
from a PicoScope 3206B using a USB 2.0 connection, or several minutes on USB 1.1.
To avoid hanging the calling thread, it is possible to call ps3000aGetValuesAsync()
instead. This immediately returns control to the calling thread, which then has the
option of waiting for the data or calling ps3000aStop() to abort the operation.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

12

Device features

3.7.2

3.7.21

Rapid block mode

In normal block mode, the oscilloscope collects one waveform at a time. You start the
the device running, wait until all samples are collected by the device, and then
download the data to the PC or start another run. There is a time overhead of tens of
milliseconds associated with starting a run, causing a gap between waveforms. When
you collect data from the device, there is another minimum time overhead which is
most noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the
minimum time between waveforms. It reduces the gap from milliseconds to less than
2 microseconds (on fastest timebase).

See Using rapid block mode for details.

Using rapid block mode

You can use rapid block mode with or without aggregation. With aggregation, you
need to set up two buffers for each channel to receive the minimum and maximum
values.

Without aggregation

Open the oscilloscope using ps3000aOpenUnit().

Select channel ranges and AC/DC coupling using ps3000aSetChannel().

[MSOs only] Set the digital port using ps3000aSetDigitalPort().

Using ps3000aGetTimebase(), select timebases until the required nanoseconds

per sample is located.

Use the trigger setup functions ps3000aSetTriggerChannelConditionsV2(),

ps3000aSetTriggerChannelDirections() and

ps3000aSetTriggerChannelProperties() to set up the trigger if required.

6. [MSOs only] Use the trigger setup functions
ps3000aSetTriggerDigitalPortProperties() to set up the digital trigger if required.

7. Set the number of memory segments equal to or greater than the number of
captures required using ps3000aMemorySegments(). Use
ps3000aSetNoOfCaptures() before each run to specify the number of waveforms
to capture.

8. Start the oscilloscope running using ps3000aRunBlock().

9. Wait until the oscilloscope is ready using the ps3000alsReady() or wait on the
callback function.

10. Use ps3000aSetDataBuffer() to tell the driver where your memory buffers are.

11. Transfer the blocks of data from the oscilloscope using ps3000aGetValuesBulk().

12. Retrieve the time offset for each data segment using
ps3000aGetValuesTriggerTimeOffsetBulk64().

13. Display the data.

14. Repeat steps 7 to 13 if necessary.

15. Stop the oscilloscope using ps3000aStop().

PWNE

6]

With aggregation

To use rapid block mode with aggregation, follow steps 1 to 9 above, then proceed as
follows:

10a. Call ps3000aSetDataBuffer() or (ps3000aSetDataBuffers()) to set up one pair of
buffers for every waveform segment required.

11a. Call ps3000aGetValuesBulk() for each pair of buffers.

12a. Retrieve the time offset for each data segment using
ps3000aGetValuesTriggerTimeOffsetBulk64().

Continue from step 13 above.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 13

3.7.2.2 Rapid block mode example 1: no aggregation

#defi ne MAX_SAMPLES 1000

Set up the device up as usual.

@® Open the device

@® Channels

® Trigger

@® Number of memory segments (this should be equal or more than the number of
captures required)

/] set the nunmber of waveforns to 100
ps3000aSet NoOr Capt ures (handl e, 100);

pParaneter = fal se;
ps3000aRunBl ock

(
handl e,
0, /'l noOI PreTrigger Sanpl es
10000, /1 noOX Post Tri gger Sanpl es
1, /] timebase to be used
1, /'l not used
&t i mel ndi sposedMs,
1, /1l segnment index
| pReady,
&pPar anet er

);

Comment: these variables have been set as an example and can be any valid value.
pPar aret er will be set true by your callback function | pReady.

while (!pParaneter) Sleep (0);

for (int32_t i =0; i < 10; i++)

{
for (int32_t c = PS3000A CHANNEL_A; c¢ <= PS3000A CHANNEL_B; c+
+)

ps3000aSet Dat aBuf f er
(

handl e,

C,
&uffer[c][i],
MAX_SAMPLES,
i
PS3000A RATI O_MODE_NONE
);
}
}

Comments: buffer has been created as a two-dimensional array of pointers to

i nt 16 _t, which will contain 1000 samples as defined by MAX_ SAMPLES. There are
only 10 buffers set, but it is possible to set up to the number of captures you have
requested.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

14 Device features

ps3000aCet Val uesBul k

(
handl| e,
&noCf Sanpl es, /1l set to MAX SAMPLES on entering the
function
10, /1 fronSegment | ndex
19, /1 toSegnent| ndex
1, /1 downsanpling ratio
PS3000A RATI O_MODE_NONE, // downsanpling ratio node
overfl ow /1l an array of size 10 intl6_t
)

Comments: the number of samples could be up to noCf PreTri gger Sanpl es +
noOf Post Tri gger Sanpl es, the values set in ps3000aRunBl ock. The samples are
always returned from the first sample taken, unlike the ps3000aGet Val ues function
which allows the sample index to be set. The above segments start at 10 and finish at
19 inclusive. It is possible for the f r onSegnent | ndex to wrap around to the

t oSegnent | ndex, by setting the f r onSegnent | ndex to 98 and the

t oSegnent | ndex to 7.

ps3000aCet Val uesTri gger Ti neCf f set Bul k64
(

handl| e,

tines,

tineUnits,

10,

19

)

Comments: the above segments start at 10 and finish at 19 inclusive. It is possible for
the f ronSegnent | ndex to wrap around to the t 0Segnent | ndex, if the
f ronSegnent | ndex is set to 98 and the t oSegnent | ndex to 7.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 15

3.7.2.3 Rapid block mode example 2: using aggregation

#defi ne MAX_SAMPLES 1000

Set up the device up as usual.

@® Open the device

@® Channels

® Trigger

@® Number of memory segments (this should be equal or more than the number of
captures required)

/] set the nunmber of waveforns to 100
ps3000aSet NoOr Capt ures (handl e, 100);

pParaneter = fal se;
ps3000aRunBl ock

(
handl e,
0, /'l noOX PreTrigger Sanpl es,
1000000, /1 noOX Post Tri gger Sanpl es,
1, /] tinmebase to be used,
1, /'l not used
&t i mel ndi sposedMs,
1 /'l segment index

I bReady,
&pPar anet er

)

Comments: the set-up for running the device is exactly the same whether or not
aggregation will be used when you retrieve the samples.

for (int32_t segnment = 10; segnent < 20; segment ++)
{for (int32_t ¢ = PS3000A CHANNEL A; c <= PS3000A CHANNEL D; c+
+)

ps3000aSet Dat aBuf fers
(

handl| e,

C,
&buf f er Max[c],
&uf ferM n[c]
MAX_SAMPLES
Segnent ,
PS3000A RATI O_MODE_AGGREGATE
);
}

Comments: since only one waveform will be retrieved at a time, you only need to set
up one pair of buffers; one for the maximum samples and one for the minimum
samples. Again, the buffer sizes are 1000 samples.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

16

Device features

}

ps3000aCet Val ues
(

handl| e,
0

&honSaanes, /1l set to MAX_SAMPLES on entering

1000,

&downSanpl eRati oMbde, //set to RATI O MODE AGGREGATE

i ndex,
overfl ow

);
ps3000aCet Tri gger Ti neX f set 64

(
handl e,
& i nme,
& i meUni ts,
i ndex
)

Comments: each waveform is retrieved one at a time from the driver with an
aggregation of 1000.

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 17

3.7.3

ETS (Equivalent Time Sampling)

ETS is a way of increasing the effective sampling rate of the scope when capturing
repetitive signals. It is a modified form of block mode, and is controlled by the trigger
functions and ps3000aSetEts().

2

Overview. ETS works by capturing several cycles of a repetitive waveform, then
combining them to produce a composite waveform that has a higher effective
sampling rate than the individual captures. The result is a larger set of samples
spaced by a small fraction of the original sampling interval. The maximum effective
sampling rates that can be achieved with this method are listed in the User's Guide
for the scope device.

Trigger stability. Because of the high sensitivity of ETS mode to small time
differences, the trigger must be set up to provide a stable waveform that varies as
little as possible from one capture to the next.

Callback. ETS mode calls the ps3000aBlockReady() callback function when a new
waveform is ready for collection. You then call ps3000aGetValues() to retrieve the
waveform.

Applicability |Available in block mode only.

Not suitable for one-shot (non-repetitive) signals.
Aggregation is not supported.

Edge-triggering only.

Auto trigger delay (aut oTri gger M | | i seconds) is ignored.
Digital ports (on MSOs) cannot be used in ETS mode.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

18 Device features

3.7.3.1 Using ETS mode

This is the general procedure for reading and displaying data in ETS mode using a
single memory segment:

When using ETS mode you must consider if a digital port has previously been active. If
it has, call ps3000aSetDigitalPort() and ps3000aSetTriggerDigitalPortProperties() to
ensure these are not active when using ETS.

Open the oscilloscope using ps3000a0OpenUnit().

Select channel ranges and AC/DC coupling using ps3000aSetChannel().

Use ps3000aSetEts() to enable ETS and to set the parameters.

Using ps3000aGetTimebase(), select timebases until the required nanoseconds

per sample is located.

Use the trigger setup functions ps3000aSetTriggerChannelConditionsV2(),

ps3000aSetTriggerChannelDirections() and ps3000aSetTriggerChannelProperties()

to set up the trigger if required.

6. Start the oscilloscope running using ps3000aRunBlock().

7. Wait until the oscilloscope is ready using the ps3000aBlockReady() callback (or
poll using ps3000alsReady()).

8. Use ps3000aSetDataBuffer() to tell the driver where your memory buffer is.

9. Transfer the block of data from the oscilloscope using ps3000aGetValues().

10. Display the data.

11. While you want to collect updated captures, repeat steps 7 to 10.

12. Stop the oscilloscope using ps3000aStop().

13. Repeat steps 6 to 12.

A WNRH

Ul

 —
Application ‘
‘psBOOOaOpenUnit } >
- 3000aSetChannd])/ Set up device

®s3000aGetTimebase

ps3000aSetETS

(set trigger functions

(ps3000aRunBlock ______
Gpp: ps3000aBlockReady)4 """
Gs3000a$etData Buffer)—>
Data processed
ps3000aGetValues)—>

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 19

3.7.4 Streaming mode

Streaming mode can capture data without the gaps that occur between blocks when
using block mode. Streaming mode supports downsampling and triggering, while
providing fast streaming (for example, with USB 2.0, at up to 31.25 MS/s or 32 ns per
sample) when one channel is active, depending on the computer's performance. This
makes it suitable for high-speed data acquisition, allowing you to capture long data
sets limited only by the computer's memory.

® Aggregation. The driver returns aggregated readings while the device is
streaming. If aggregation is set to 1 then only one buffer is used per channel. When
aggregation is set above 1 then two buffers (maximum and minimum) per channel
are used.

® Memory segmentation. The memory can be divided into segments to reduce the
latency of data transfers to the PC. However, this increases the risk of losing data if
the PC cannot keep up with the device's sampling rate.

See Using streaming mode for programming details when using the API. When using
the wrapper DLL, see Using the wrapper functions for streaming data capture.

3.7.4.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode using
a single memory segment:

Open the oscilloscope using ps3000a0OpenUnit().

Select channels, ranges and AC/DC coupling using ps3000aSetChannel().

[MSOs only] Set the digital port using ps3000aSetDigitalPort().

Use the trigger setup functions ps3000aSetTriggerChannelConditionsV2(),

ps3000aSetTriggerChannelDirections() and

ps3000aSetTriggerChannelProperties() to set up the trigger if required.

5. [MSOs only] Use the trigger setup functions
ps3000aSetTriggerDigitalPortProperties() to set up the digital trigger if required.

6. Call ps3000aSetDataBuffer() to tell the driver where your data buffer is.

7. Set up aggregation and start the oscilloscope running using
ps3000aRunStreaming().

8. Call ps3000aGetStreaminglatestValues() to get data.

9. Process data returned to your application's function. This example is using Auto
Stop, so after the driver has received all the data points requested by the
application, it stops the device streaming.

10. Call ps3000aStop(), even if Auto Stop is enabled.

A WNRH

Application |)

(posoooeopenumit)
Set up device

Set trigger functions
ps3000aSetDataBuffer

bs3000aRunStreaming
(ps3000aGetstreamingLatestvalue }——»
Gpp: ps3000astreamingReady)4—

~
Auto st
Stop streaming
(ps3000astop }— Endstreaming

11. Request new views of stored data using different downsampling parameters: see
Retrieving stored data.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

20 Device features
3.7.5 Retrieving stored data
You can collect data from the ps3000a driver with a different downsampling factor
when ps3000aRunBlock() or ps3000aRunStreaming() has already been called and has
successfully captured all the data. Use ps3000aGetValuesAsync().
-
3.8 Combining several oscilloscopes

It is possible to collect data using up to 64 PicoScope oscilloscopes at the same time,
depending on the capabilities of the PC. Each oscilloscope must be connected to a
separate USB port. ps3000aOpenUnit() returns a handle to an oscilloscope. All the
other functions require this handle for oscilloscope identification. For example, to
collect data from two oscilloscopes at the same time:

CALLBACK ps3000aBl ockReady(...)
/1 define callback function specific to application

handl el
handl e2

ps3000aCpenUni t ()
ps3000aCpenUni t ()

ps3000aSet Channel (handl el)

/] set up unit 1

ps3000aSet Di gi tal Port *(when using PicoScope 3000 MSOs only)
ps3000aRunBl ock(handl el)

ps3000aSet Channel (handl e2)

/] set up unit 2

ps3000aSet Di gi tal Port *(when using PicoScope 3000 MSOs only)
ps3000aRunBl ock(handl e2)

/] data will be stored in buffers
/1 and application will be notified using callback

ready = FALSE

whi | e not ready
ready = handl el_ready
ready &= handl e2_ready

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

21

4

API functions

The ps3000a API exports the following functions for you to use in your own
applications. All functions are C functions using the standard call naming convention
(__stdcal |l). They are all exported with both decorated and undecorated names. An
additional set of wrapper functions is provided for use with programming languages

that do not support callbacks.

ps3000aBlockReady
ps3000aChangePowerSource
ps3000aCloseUnit
ps3000aCurrentPowerSource
ps3000aDataReady
ps3000aEnumerateUnits
ps3000aFlashlLed
ps3000aGetAnalogueOffset
ps3000aGetChannellnformation
ps3000aGetMaxDownSampleRatio
ps3000aGetMaxEtsValues
ps3000aGetMaxSegments
ps3000aGetNoOfCaptures
ps3000aGetNoOfProcessedCaptures
ps3000aGetStreaminglLatestValues
ps3000aGetTimebase
ps3000aGetTimebase2
ps3000aGetTriggerInfoBulk
ps3000aGetTriggerTimeOffset
ps3000aGetTriggerTimeOffset64
ps3000aGetUnitInfo
ps3000aGetValues
ps3000aGetValuesAsync
ps3000aGetValuesBulk
ps3000aGetValuesOverlapped
ps3000aGetValuesOverlappedBulk
ps3000aGetValuesTriggerTimeOffsetBulk
ps3000aGetValuesTriggerTimeOffsetBulk64
ps3000aHoldOff

ps3000alsReady
ps3000alsTriggerOrPulseWidthQualifierEnabled

ps3000aMaximumValue
ps3000aMemorySegments
ps3000aMinimumValue
ps3000aNoOfStreamingValues
ps3000a0penUnit
ps3000a0OpenUnitAsync
ps3000a0OpenUnitProgress
ps3000aPingUnit
ps3000aRunBlock
ps3000aRunStreaming
ps3000aSetBandwidthFilter
ps3000aSetChannel
ps3000aSetDataBuffer
ps3000aSetDataBuffers
ps3000aSetDigitalPort
ps3000aSetEts
ps3000aSetEtsTimeBuffer
ps3000aSetEtsTimeBuffers
ps3000aSetNoOfCaptures
ps3000aSetPulseWidthDigitalPortProperties
ps3000aSetPulseWidthQualifier
ps3000aSetPulseWidthQualifierV2
ps3000aSetSigGenArbitrary
ps3000aSetSigGenBuiltIn

indicate when block-mode data ready
configure the unit's power source

close a scope device

indicate the current power state of the device
indicate when post-collection data ready
find all connected oscilloscopes

flash the front-panel LED

query the permitted analog offset range
query which ranges are available on a device
query the aggregation ratio for data

obtain limits for the ETS parameters

query the maximum number of segments
find out how many captures are available
query number of captures processed

get streaming data while scope is running
find out what timebases are available

find out what timebases are available

get rapid block trigger timings

find out when trigger occurred (32-bit)

find out when trigger occurred (64-bit)

read information about scope device
retrieve block-mode data with callback
retrieve streaming data with callback
retrieve data in rapid block mode

set up data collection ahead of capture

set up data collection in rapid block mode
get rapid-block waveform timings (32-bit)
get rapid-block waveform timings (64-bit)
not currently used

poll driver in block mode

find out whether trigger is enabled

query the max. ADC count in GetValues calls
divide scope memory into segments

query the min. ADC count in GetValues calls
get number of samples in streaming mode
open a scope device

open a scope device without waiting

check progress of OpenUnit call

check communication with device

start block mode

start streaming mode

control the bandwidth limiter

set up input channels

register data buffer with driver

register aggregated data buffers with driver
enable the digital port and set the logic level
set up equivalent-time sampling

set up buffer for ETS timings (64-bit)

set up buffer for ETS timings (32-bit)

set number of captures to collect in one run
set up pulse width triggering on digital port
set up pulse width triggering

set up pulse width triggering (digital condition)
set up arbitrary waveform generator

set up standard signal generator

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

ps3000apg.en r13

22

API functions

ps3000aSetSigGenBuiltInV2
ps3000aSetSigGenPropertiesArbitrary
ps3000aSetSigGenPropertiesBuiltIn
ps3000aSetSimpleTrigger
ps3000aSetTriggerChannelConditions
ps3000aSetTriggerChannelConditionsV2

ps3000aSetTriggerChannelDirections
ps3000aSetTriggerChannelProperties
ps3000aSetTriggerDelay
ps3000aSetTriggerDigitalPortProperties
ps3000aSigGenArbitraryMinMaxValues
ps3000aSigGenFrequencyToPhase
ps3000aSigGenSoftwareControl

ps3000aStop
ps3000aStreamingReady

set up signal generator (double precision)
set arbitrary waveform generator properties
set signal generator properties

set up level triggers only

specify which channels to trigger on

specify trigger channels for MSOs

set up signal polarities for triggering

set up trigger thresholds

set up post-trigger delay

set individual digital channels trigger directions
query AWG parameter limits

calculate AWG phase from frequency
trigger the signal generator

stop data capture

indicate when streaming-mode data ready

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 23

4.1 ps3000aBlockReady (callback)
typedef void (CALLBACK *ps3000aBl ockReady)

int16_t handl e,
Pl CO_STATUS status,
voi d * pPar anet er

)

This callback function is part of your application. You register it with the ps3000a
driver using ps3000aRunBlock(), and the driver calls it back when block-mode data is
ready. You can then download the data using ps3000aGetValues().

Your callback function should do nothing more than copy the data to another buffer
within your application. To maintain the best application performance, the function
should return as quickly as possible without attempting to process or display the data.

Applicability [Block mode only
Arguments handl e, the handle of the device returning the samples.

st at us, indicates whether an error occurred during collection of the
data.

* pParanet er, a void pointer passed from ps3000aRunBlock().
Your callback function can write to this location to send any data,
such as a status flag, back to your application.

Returns nothing

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

24 API functions

4.2 ps3000aChangePowerSource
Pl CO_STATUS ps3000aChangePower Sour ce

int16_t handl e,
Pl CO_STATUS power st at e

)

This function selects the power supply mode. You must call this function if any of the
following conditions arises:

® USB power is required
® the AC power adapter is connected or disconnected during use

® a USB 3.0 scope is plugged into a USB 2.0 port (indicated if any function returns
the PI CO USB3_0_ DEVI CE_NON USB3 0 PORT status code)

Applicability |All modes. 4-channel and USB 3.0 oscilloscopes only.
Arguments handl e, the handle of the device.

power st at e, the required state of the unit. Either of the following:
Pl CO_ PONER_SUPPLY_CONNECTED
Pl CO_PONER_SUPPLY_NOT_CONNECTED

Returns Pl CO X

Pl CO PONER_SUPPLY_ REQUEST | NVALI D

Pl CO_| NVALI D_PARANMETER

Pl CO_NOT_RESPONDI NG

Pl CO_| NVALI D_HANDLE

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

25

4.3 ps3000aCloseUnit
Pl CO_STATUS ps3000ad oseUni t

int16_t handl e
)

This function shuts down an oscilloscope.

Applicability |All modes

Arguments handl e, the handle, returned by ps3000aOpenUnit(), of the scope

device to be closed.
Returns PI CO_ K

Pl CO HANDLE | NVALI D

Pl CO USER CALLBACK

Pl CO DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

26 API functions

4.4 ps3000aCurrentPowerSource
Pl CO_STATUS ps3000aCur r ent Power Sour ce

int16_t handl e
)

This function returns the current power state of the device.

Applicability |All modes. 4-channel oscilloscopes only.

Arguments handl e, the handle of the device.
Returns Pl CO_ PONER_SUPPLY_CONNECTED - if the device is powered by the
AC adapter.

Pl CO_PONER_SUPPLY_NOT_CONNECTED - if the device is powered by
the USB cable.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 27

4.5 ps3000aDataReady (callback)
typedef void (CALLBACK *ps3000aDat aReady)

(
int16_t handl e,
Pl CO_STATUS status,
ui nt 32_t noCF Sanpl es,
intl1l6 t overfl ow,
voi d * pPar anet er

)

This is a callback function that you write to collect data from the driver. You supply a
pointer to the function when you call ps3000aGetValuesAsync(), and the driver calls
your function back when the data is ready.

Your callback function should do nothing more than copy the data to another buffer
within your application. To maintain the best application performance, the function
should return as quickly as possible without attempting to process or display the data.

Applicability |All modes
Arguments handl e, the handle of the device returning the samples.

st at us, a Pl CO_STATUS code returned by the driver.

noF Sanpl es, the number of samples collected.

over fl ow, a set of flags that indicates whether an overvoltage has
occurred and on which channels. It is a bit field with bit 0
representing Channel A.

* pParanet er, a void pointer passed from

ps3000aGetValuesAsync(). The callback function can write to this

location to send any data, such as a status flag, back to the

application. The data type is defined by the application programmer.
Returns nothing

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

28 API functions

4.6 ps3000aEnumerateUnits
Pl CO_STATUS ps3000aEnuner at eUni ts

intlé_t * count,

int8t * serials,

intlé_t * seriallLth
)

This function counts the number of ps3000a-compatible scopes connected to the
computer, and returns a list of serial numbers as a string.

Applicability |All modes
Arguments * count, on exit, the number of ps3000a-compatible units found

* serials, onexit, alist of serial numbers separated by commas
and terminated by a final null. Example:

AQD05/ 139, VDR61/ 356, ZOR14/ 107. Can be NULL on entry if serial
numbers are not required.

* serial Lth, on entry, the length of the i nt 8_t buffer pointed to
by seri al s; on exit, the length of the string written to seri al s

Returns Pl CO &K
Pl CO_BUSY
Pl CO_NULL_PARAMETER
Pl CO_FW FAI L

Pl CO_CONFI G_FAI L
Pl CO_VEMORY_FAI L
Pl CO_CONFI G_FAI L_AVG
Pl CO_| NI TI ALI SE_FPGA

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 29

4.7 ps3000aFlashLed
Pl CO_STATUS ps3000aFl| ashLed

int16_t handl e,
intl1l6 t start

)

This function flashes the LED on the front of the scope without blocking the calling
thread. Calls to ps3000aRunStreaming() and ps3000aRunBlock() cancel any flashing
started by this function. It is not possible to set the LED to be constantly illuminated,
as this state is used to indicate that the scope has not been initialized.

Applicability |All modes

Arguments handl e, the handle of the scope device
start, the action required: -

< 0 : flash the LED indefinitely.
0 : stop the LED flashing.
> 0 :flash the LED st art times. If the LED is already flashing

on entry to this function, the flash count will be reset to
start.

Returns PI CO_ K
Pl CO HANDLE | NVALI D
Pl CO_BUSY
Pl CO DRI VER_FUNCTI ON
Pl CO_NOT_RESPONDI NG

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

30 API functions

4.8 ps3000aGetAnalogueOffset
Pl CO_STATUS ps3000aGet Anal ogue f set

(
int16_t handl e,
PS3000A RANGE range,
PS3000A COUPLI NG coupl i ng,
fl oat * maxi mumvol t age,
fl oat * m ni rumvol t age

)

This function is used to get the maximum and minimum allowable analog offset for a
specific voltage range.

Applicability |Al models

Arguments handl e, the value returned from opening the device.

range, the voltage range to be used when gathering the min and
max information.

coupl i ng, the type of AC/DC coupling used.

* maxi mumvol t age, a pointer to a float, an out parameter set to
the maximum voltage allowed for the range, may be NULL.

* m ni mumvol t age, a pointer to a float, an out parameter set to
the minimum voltage allowed for the range, may be NULL.

If both maxi mumvol t age and m ni munVol t age are set to NULL
the driver will return Pl CO_NULL_PARAMETER
Returns Pl CO_ K
Pl CO_| NVALI D_HANDLE
Pl CO_DRI VER_FUNCTI ON
Pl CO | NVALI D_VOLTAGE RANGE
Pl CO_NULL_PARAMETER

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 31

4.9 ps3000aGetChannellnformation
Pl CO_STATUS ps3000aGet Channel | nf ormati on

(
int16_t handl e,
PS3000A CHANNEL | NFO info,
int32_t pr obe,
int32 t * ranges,
int32_t * | engt h,
int32 t channel s

)

This function queries which ranges are available on a scope device.

Applicability |All modes
Arguments handl e, the handle of the required device.

i nf o, the type of information required. The following value is

currently supported:
PS3000A Cl _RANGES

probe, not used, must be set to 0.
* ranges, an array that will be populated with available

PS3000A_RANGE values for the given info. If NULL, length is set to
the number of ranges available.

* | engt h, on input: the length of the ranges array; on output: the
number of elements written to ranges array.

channel s, the channel for which the information is required.
Returns Pl CO_K

Pl CO HANDLE | NVALI D

Pl CO _BUSY

Pl CO DRI VER_FUNCTI ON

Pl CO_NOT_RESPONDI NG

Pl CO NULL_ PARAMETER

Pl CO_| NVALI D_CHANNEL

Pl CO_| NVALI D_| NFO

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

32

API functions

4.10 ps3000aGetMaxDownSampleRatio
Pl CO_STATUS ps3000aGet MaxDownSanpl eRati o

«
intl1l6 t
uint32_t
uint32_t

handl e,
noOF Unaggr egat edSanpl es,
* maxDownSanpl eRat i o,

PS3000A RATI O MODE downSanpl eRat i oMbde,

uint32_t
)

segnent | ndex

This function returns the maximum downsampling ratio that can be used for a given
number of samples in a given downsampling mode.

Applicability
Arguments

Returns

All modes
handl e, the handle of the required device

noCf Unaggr egat edSanpl es, the number of unprocessed samples
to be downsampled

* maxDownSanpl eRati 0, the maximum possible downsampling
ratio output

downSanpl eRat i oMbde, the downsampling mode. See
ps3000aGetValues()

segnent | ndex, the memory segment where the data is stored
Pl CO K

Pl CO_| NVALI D_HANDLE

Pl CO_NO_SAVPLES_AVAI LABLE

Pl CO_NULL_PARAMETER

Pl CO_| NVALI D_PARAMETER

Pl CO_SEGVENT_QOUT_COF_RANGE

Pl CO_TOO_NMANY_SAMPLES

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 33

4.11 ps3000aGetMaxEtsValues
Pl CO_STATUS ps3000aCet MaxEt sVal ues

int16_t handl e,
intlée t * etsCycles,
intlé_t * etslnterleave

)

This function returns the maximum number of cycles and maximum interleaving factor
that can be used for the selected scope device in ETS mode. These values are the
upper limits for the et sCycl es and et sl nterl eave arguments supplied to
ps3000SetEts().

Applicability |All modes

Arguments handl e, the handle of the required device

et sCycl es, the maximum value of the et sCycl es argument
supplied to ps3000SetEts()

etslnterl eave, the maximum value of the et sl nterl eave
argument supplied to ps3000SetEts()

Returns PI CO_K
Pl CO | NVALI D_HANDLE
Pl CO_ DRI VER_FUNCTI ON
Pl CO_NULL_PARAMETER - if et sCycl es and et sl nterl| eave are
both NULL

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

34 API functions

4.12 ps3000aGetMaxSegments
Pl CO STATUS ps3000aCet MaxSegnment s

int16_t handl e,
uint32_t * naxsegnents

)

This function returns the maximum number of segments allowed for the opened
device. This number is the maximum value of nsegnent s that can be passed to
ps3000aMemorySegments().

Applicability |All modes

Arguments handl e, the value returned from opening the device.

* maxsegnment s, on exit, the maximum number of segments
allowed.
Returns Pl CO_K
Pl CO_ | NVALI D_HANDLE
Pl CO DRI VER_FUNCTI ON
Pl CO NULL_ PARAMETER

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 35

4.13 ps3000aGetNoOfCaptures
Pl CO_STATUS ps3000aGet NoOf Capt ur es

intl6 t handl e,
uint32_t * nCaptures

)

This function finds out how many captures are available in rapid block mode after
ps3000aRunBlock() has been called when either the collection completed or the
collection of waveforms was interrupted by calling ps3000aStop(). The returned value
(nCapt ur es) can then be used to iterate through the number of segments using
ps3000aGetValues(), or in a single call to ps3000aGetValuesBulk() where it is used to
calculate the t 0Segnent | ndex parameter.

Applicability |Rapid block mode
Arguments handl e, handle of the required device.

* nCapt ures, output: the number of available captures that has

been collected from calling ps3000aRunBlock().
Returns PI CO_ X

Pl CO DRI VER_FUNCTI ON

Pl CO_ | NVALI D_HANDLE

Pl CO_NOT_RESPONDI NG

Pl CO NO SAMPLES AVAI LABLE

Pl CO_NULL_PARAMETER

Pl CO | NVALI D_PARAMETER

Pl CO_SEGQVENT_QUT_OF RANGE

Pl CO TOO MANY_SAMPLES

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

36 API functions

4.14 ps3000aGetNoOfProcessedCaptures
Pl CO _STATUS ps3000aGet NoOf ProcessedCapt ur es

intl6 t handl e,
uint32_t * nCaptures
)

This function finds out how many captures in rapid block mode have been processed
after ps3000aRunBlock() has been called when either the collection completed or the
collection of waveforms was interrupted by calling ps3000aStop(). The returned value
(nCapt ur es) can then be used to iterate through the number of segments using

ps3000aGetValues(), or in a single call to ps3000aGetValuesBulk() where it is used to
calculate the t 0Segnent | ndex parameter.

Applicability |Rapid block mode
Arguments handl e, handle of the required device.

* nCapt ures, output: the number of available captures that has
been collected from calling ps3000aRunBlock().
Returns PI CO_ X
Pl CO DRI VER_FUNCTI ON
Pl CO_ | NVALI D_HANDLE
Pl CO_NO _SAMPLES AVAI LABLE
Pl CO NULL_ PARAMETER
Pl CO | NVALI D_PARAMETER
Pl CO SEGVENT_QUT_OF RANGE
Pl CO TOO _MANY_SAMPLES

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 37

4.15 ps3000aGetStreaminglLatestValues
Pl CO STATUS ps3000aCet St ream nglLat est Val ues

intl6 t handl e,
ps3000asSt r eam ngReady | pPs3000AReady,
voi d * pPar anet er

)

This function instructs the driver to return the next block of values to your
ps3000aStreamingReady() callback. You must have previously called
ps3000aRunStreaming() beforehand to set up streaming.

Applicability |Streaming mode only
Arguments handl e, the handle of the required device.

| pPs3000AReady, a pointer to your ps3000aStreamingReady()
callback.

* pParanmet er, a void pointer that will be passed to the

ps3000aStreamingReady() callback. The callback may optionally use

this pointer to return information to the application.
Returns PI CO_ K

Pl CO PONER_SUPPLY_ CONNECTED

Pl CO PONER_SUPPLY_NOT_CONNECTED

Pl CO_ | NVALI D_HANDLE

Pl CO_NO_SAMPLES AVAI LABLE

Pl CO | NVALI D_CALL

Pl CO_BUSY

Pl CO_NOT_RESPONDI NG

Pl CO DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

38

API functions

4.16 ps3000aGetTimebase
Pl CO_STATUS ps3000aCet Ti nebase

«
intl1l6 t
uint32_t
int32_t
int32 t
intl6 t
int32 t
ui nt 32_t

)

handl e,
ti nebase,
noSanpl es,
* tinmel nterval Nanoseconds,
over sanpl e,
* maxSanpl es,
segnent | ndex

This function calculates the sampling rate and maximum number of samples for a
given timebase under the specified conditions. The result will depend on the number of
channels enabled by the last call to ps3000aSetChannel().

This function is provided for use with programming languages that do not support the
f | oat data type. The value returned in the t i nel nt er val Nanoseconds argument
is restricted to integers. If your programming language supports the f | oat type, then
we recommend that you use ps3000aGetTimebase2() instead.

To use ps3000aGetTimebase() or ps3000aGetTimebase2(), first estimate the timebase

number that you require using the information in the timebase guide. Next, call one of
these functions with the timebase that you have just chosen and verify that the

ti mel nt erval Nanoseconds argument that the function returns is the value that you
require. You may need to iterate this process until you obtain the time interval that

you need.

Applicability
Arguments

Returns

All modes
handl e, the handle of the required device.

ti nebase, see timebase quide

noSanpl es, the number of samples required.

* tinelnterval Nanoseconds, on exit, the time interval between
readings at the selected timebase. Use NULL if not required.

over sanpl e, not used.

* maxSanpl es, on exit, the maximum number of samples
available. The result may vary depending on the number of channels
enabled and the timebase chosen. Use NULL if not required.

segnent | ndex, the index of the memory segment to use.

Pl CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO_TOO MANY_ SAMPLES

Pl CO_| NVALI D_CHANNEL

Pl CO_| NVALI D_TI MEBASE

Pl CO_| NVALI D_PARAMETER

Pl CO_SEGVENT_OUT_OF RANGE
Pl CO_DRI VER_FUNCTI ON

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 39

4.17 ps3000aGetTimebase2
Pl CO_STATUS ps3000aCet Ti nebase2

(
intl6 t handl e,
uint32_t ti nebase,
int32_t noSanpl es,
fl oat * tinmelnterval Nanoseconds,
intl6 t over sanpl e,
int32_t * maxSanpl es,
uint32_t segnent | ndex
)

This function is an upgraded version of ps3000aGetTimebase(), and returns the time
interval as a f| oat rather than an i nt 32_t . This allows it to return sub-nanosecond
time intervals. See ps3000aGetTimebase() for a full description.

Applicability |All modes

Arguments * timel nterval Nanoseconds, a pointer to the time interval

between readings at the selected timebase. If a null pointer is
passed, nothing will be written here.

All other arguments: see ps3000aGetTimebase().
Returns See ps3000aGetTimebase().

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

40 API functions

4.18 ps3000aGetTriggerinfoBulk
Pl CO_STATUS ps3000aGet Tri gger | nf oBul k

(
intl6 t handl e,
PS3000A TRI GGER_|I NFO * triggerl nfo,
uint32_t fr onSegnent | ndex,
ui nt 32_t t oSegnent | ndex

)

This function returns trigger information in rapid block mode.

Applicability |Rapid block mode.
PicoScope 3207A and 3207B only.

Arguments handl e, the handle of the required device.

triggerlnfo, an array of pointers to PS3000A TRI GGER | NFO
structures that, on exit, will contain information on each trigger
event. There will be one structure for each segment in the range

[fronBegnent | ndex, toSegnent | ndex] .

fr onSegnent | ndex, the number of the first memory segment for
which information is required.

t oSegnent | ndex, the number of the last memory segment for
which information is required.
Returns Pl CO_NOT_SUPPCORTED_BY_THI S_DEVI CE
Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_NULL_PARAMETER
Pl CO_SEGVENT_QUT_OF_RANGE
Pl CO_NOT_USED | N_TH S_CAPTURE_MCDE
Pl CO_ETS_MODE_SET
Pl CO_CK
Pl CO_NOT_RESPONDI NG
Pl CO_I NVALI D_HANDLE
Pl CO_DRI VER_FUNCTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 41

4.19 ps3000aGetTriggerTimeOffset
Pl CO_STATUS ps3000aGet Tri gger Ti neCf f set

(
intl6 t handl e,
ui nt 32_t * ti meUpper,
uint32_t * timeLower,
PS3000A TIME_UNITS * tineUnits,
uint32_t segnent | ndex
)

This function gets the time, as two 4-byte values, at which the trigger occurred. Call it
after block-mode data has been captured or when data has been retrieved from a
previous block-mode capture. A 64-bit version of this function,
ps3000aGetTriggerTimeOffset64(), is also available.

Applicability |Block mode, rapid block mode

Arguments handl e, the handle of the required device

* timeUpper, on exit, the upper 32 bits of the time at which the
trigger point occurred

* timeLower, on exit, the lower 32 bits of the time at which the
trigger point occurred

* tinmeUnits, returns the time units in which ti meUpper and
ti meLower are measured. The allowable values are: -

PS3000A FS

PS3000A PS

PS3000A NS

PS3000A US

PS3000A M5

PS3000A_ S

segnent | ndex, the number of the memory segment for which the
information is required.
Returns PI CO_OK
Pl CO_| NVALI D_HANDLE
Pl CO_DEVI CE_SAMPLI NG
Pl CO_SEGQVENT_OUT_OF_RANGE
Pl CO_NOT_USED | N_TH S_CAPTURE_MODE
Pl CO_NOT_RESPONDI NG
Pl CO_NULL_PARAMETER
Pl CO_NO _SAMPLES_AVAI LABLE
Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

42 API functions

4.20 ps3000aGetTriggerTimeOffset64
Pl CO_STATUS ps3000aGet Tri gger Ti meCf f set 64

(
intl6 t handl e,
int64 t * tine,
PS3000A TIME_UNITS * tineUnits,
ui nt 32_t segnent | ndex
)

This function gets the time, as a single 64-bit value, at which the trigger occurred. Call
it after block-mode data has been captured or when data has been retrieved from a
previous block-mode capture. A 32-bit version of this function,
ps3000aGetTriggerTimeOffset(), is also available.

Applicability [Block mode, rapid block mode

Arguments handl e, the handle of the required device
* tinme, on exit, the time at which the trigger point occurred

* tinmeUnits, on exit, the time units in which time is measured.
The possible values are: -

PS3000A FS

PS3000A PS

PS3000A NS

PS3000A US

PS3000A NB

PS3000A S

segnent | ndex, the number of the memory segment for which the
information is required
Returns PI CO_ X
Pl CO_| NVALI D_HANDLE
Pl CO_DEVI CE_SAMPLI NG
Pl CO_SEGVENT_OUT_OF_RANGE
Pl CO_NOT_USED | N_TH S_CAPTURE_MODE
Pl CO_NOT_RESPONDI NG
Pl CO_NULL_PARAMETER
Pl CO_NO _SAMPLES_AVAI LABLE
Pl CO_DRI VER_FUNCTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

43

4.21 ps3000aGetUnitinfo
Pl CO_STATUS ps3000aGet Unitlnfo

(
intl6 t handl e,
int8 t * string,
intl6 t stringLength,
int16_t * requiredSize,
PICOINFO info

)

This function retrieves information about the specified oscilloscope. If the device fails
to open or no device is opened, only the driver version is available.

Applicability |All modes

returned.

may be written to stri ng.

array.

possible values are listed in the table below.

Arguments handl e, the handle of the device to query. If an invalid handle is
passed, only the driver versions can be read.

* string, on exit, the information string selected specified by the
i nfo argument. If stri ng is NULL, only r equi r edSi ze is
stringlLength, on entry, the maximum number of i nt 8_t that

* requiredSi ze, on exit, the required length of the stri ng

i nf o, a number specifying what information is required. The

Returns PI CO_ XX

Pl CO_| NVALI D_HANDLE
Pl CO NULL_PARAMETER
Pl CO_| NVALI D_I NFO

Pl CO | NFO_UNAVAI LABLE
Pl CO DRI VER_FUNCTI ON

Hardware version of the analogue section

info Example

0 |PI CO DRI VER VERSI ON 1,0,0,1
Version number of PicoScope 3000A DLL

1 |PI CO_USB VERSI ON 2.0
Type of USB connection to device: 1.1, 2.0 or 3.0

2 Pl CO_ HARDWARE VERSI ON 1
Hardware version of device

3 |PI CO_VARI ANT | NFO 3206B
Variant number of device

4 |PI CO BATCH AND_ SERI AL KJL87/ 6
Batch and serial number of device

5 |PI CO _CAL_ DATE 30Sep09
Calibration date of device

6 Pl CO KERNEL_ VERSI ON 1,1,2,4
Version of kernel driver

7 Pl CO DI G TAL_HARDWARE VERSI ON 1
Hardware version of the digital section

8 |PI CO_ANALOGUE HARDWARE VERSI ON 1

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

ps3000apg.enr13

44 API functions

4.22 ps3000aGetValues
Pl CO_STATUS ps3000aCet Val ues

(
intl6 t handl e,
uint32_t startl ndex,
uint32_t * noCf Sanpl es,
uint32_t downSanpl eRat i o,
PS3000A RATI O MODE downSanpl eRat i oMbde,
uint32_t segnent | ndex,
intl6 t * overfl ow

)

This function returns block-mode data, with or without downsampling, starting at the
specified sample number. It is used to get the stored data from the driver after data
collection has stopped.

Applicability Block mode, rapid block mode

Arguments handl e, the handle of the required device.

start | ndex, a zero-based index that indicates the start point for

data collection. It is measured in sample intervals from the start of
the buffer.

* noCf Sanpl es, on entry, the number of samples required. On
exit, the actual number retrieved. The number of samples retrieved
will not be more than the number requested, and the data retrieved
starts at st art | ndex.

downSanpl eRat i 0, the downsampling factor that will be applied to
the raw data.

downSanpl eRat i oMbde, which downsampling mode to use. The
available values are: -
PS3000A RATI O MODE NONE (downSanpl eRati o is ignored)
PS3000A RATI O MODE AGGREGATE
PS3000A RATI O MODE AVERAGE
PS3000A RATI O MODE DECI MATE

AGGREGATE, AVERAGE, DECI MATE are single-bit constants that can
be ORed to apply multiple downsampling modes to the same data.

segnent | ndex, the zero-based number of the memory segment
where the data is stored.

* overfl ow, on exit, a set of flags that indicate whether an
overvoltage has occurred on any of the channels. It is a bit field with
bit 0 denoting Channel A.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 45

Returns PI CO X
Pl CO_| NVALI D_HANDLE
Pl CO_PONER_SUPPLY_ CONNECTED
Pl CO PQ/\ER SUPPLY NOT_CONNECTED
Pl CO NO SAI\/PLES AVAI LABLE
Pl CO DEVI CE SAVPLI NG
Pl CO NULL PARAMETER
P CO SEGVENT QUT_OF_RANCE
Pl CO STARTI NDEX I NVALI D
Pl CO ETS_NOT_RUNNI NG
Pl CO BUFFERS NOT_SET
Pl CO_I NVALI D_PARAMETER
Pl CO TOO MANY_ SAMPLES
Pl CO DATA NOT AVAI LABLE
Pl CO STARTI NDEX I NVALI D
Pl CO_I NVALI D_SAI\/PLERATI O
Pl CO_| NVALI D_CALL
Pl CO_NOT_RESPONDI NG
Pl CO_MEMORY
Pl CO RATI O_MODE_NOT_SUPPORTED
Pl CO DRI VER FUNCTI ON

4.22.1 Downsampling modes

Various methods of data reduction, or downsampling, are possible with PicoScope
oscilloscopes. The downsampling is done at high speed by dedicated hardware inside
the scope, making your application faster and more responsive than if you had to do
all the data processing in software.

You specify the downsampling mode when you call one of the data collection functions
such as ps3000aGetValues(). The following modes are available:

PS3000A_RATI O_MODE_AGGREGATE Reduces every block of n values to just two
values: a minimum and a maximum. The
minimum and maximum values are
returned in two separate buffers.

PS3000A_RATI O_MODE_DECI MATE Reduces every block of n values to just the
first value in the block, discarding all the
other values.

PS3000A_RATI O_MODE_AVERAGE Reduces every block of n values to a single
value representing the average (arithmetic
mean) of all the values.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

46

API functions

4.23 ps3000aGetValuesAsync
Pl CO_STATUS ps3000aCet Val uesAsync

«
intl1l6 t
uint32_t
uint32_t
uint32_t

handl e,

startl ndex,

noCr Sanpl es,
downSanpl eRat i o,

PS3000A RATI O MODE downSanpl eRat i oMbde,

uint32_t
voi d
voi d

)

segnent | ndex,
| pDat aReady,
* pPar anet er

This function returns data either with or without downsampling, starting at the
specified sample number. It is used to get the stored data from the scope after data
collection has stopped. It returns the data using a callback.

Applicability
Arguments

Returns

Streaming mode and block mode

handl e, the handle of the required device

startl ndex, see ps3000aGetValues()

nof Sanpl es, see ps3000aGetValues()
downSanpl eRat i 0, see ps3000aGetValues()
downSanpl eRat i oMbde, see ps3000aGetValues()
segnent | ndex, see ps3000aGetValues()

* | pDat aReady, a pointer to the user-supplied function that will
be called when the data is ready. This will be ps3000aDataReady()
for block-mode data or ps3000aStreamingReady() for streaming-
mode data.

* pParanet er, a void pointer that will be passed to the callback
function. The data type is determined by the application.
Pl CO X

Pl CO_ PONER_SUPPLY_CONNECTED

Pl CO PONER_SUPPLY_NOT_CONNECTED

Pl CO_| NVALI D_HANDLE

Pl CO_NO _SAMPLES AVAI LABLE

Pl CO _DEVI CE_SAMPLI NG

Pl CO NULL_ PARAMETER

Pl CO_STARTI NDEX | NVALI D

Pl CO SEGVENT_QUT_OF RANGE

Pl CO | NVALI D_PARAMETER

Pl CO DATA NOT_AVAI LABLE

Pl CO_| NVALI D_SAVMPLERATI O

Pl CO | NVALI D_CALL

Pl CO DRI VER_FUNCTI ON

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

47

4.24 ps3000aGetValuesBulk
Pl CO_STATUS ps3000aCet Val uesBul k

«
intl6 t
ui nt 32_t
uint32_t
ui nt 32_t
uint32_t

handl e,

* noCOf Sampl es,
f r onSegnent | ndex,
t oSegnent | ndex,
downSanpl eRat i o,

PS3000A RATI O MODE downSanpl eRat i ovbde,

intl6 t
)

* overfl ow

This function retrieves waveforms captured using rapid block mode. The waveforms
must have been collected sequentially and in the same run.

Applicability

Arguments

Returns

Rapid block mode

handl e, the handle of the device

* noCf Sanpl es, on entry, the number of samples required; on
exit, the actual number retrieved. The number of samples retrieved
will not be more than the number requested. The data retrieved
always starts with the first sample captured.

f r onSegnent | ndex, the first segment from which the waveform
should be retrieved

t oSegnent | ndex, the last segment from which the waveform
should be retrieved

downSanpl eRat i 0, see ps3000aGetValues()
downSanpl eRat i oMbde, see ps3000aGetValues()

* overfl ow, an array of integers equal to or larger than the
number of waveforms to be retrieved. Each segment index has a
corresponding entry in the over f | ow array, with over fl| owf 0]
containing the flags for the segment numbered f r onSegnent | ndex

and the last element in the array containing the flags for the segment

numbered t 0Segnent | ndex. Each element in the array is a bit field
as described under ps3000aGetValues().
Pl CO &K

Pl CO_PONER_SUPPLY_CONNECTED

Pl CO_PONER_SUPPLY_NOT_CONNECTED
Pl CO_| NVALI D_HANDLE

Pl CO_| NVALI D_PARAMETER

Pl CO_| NVALI D_SAMPLERATI O

Pl CO_ETS_NOT_RUNNI NG

Pl CO_ BUFFERS_NOT_SET

Pl CO_TOO_MANY_SAMPLES

Pl CO_SEGVENT_OUT_OF_RANGE

Pl CO_NO _SAMPLES_AVAI LABLE

Pl CO_NOT_RESPONDI NG

Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

ps3000apg.en r13

48 API functions

4.25 ps3000aGetValuesOverlapped
Pl CO _STATUS ps3000aCet Val uesOver | apped

(
intl6_ t handl e,
ui nt 32_t startl ndex,
uint32_t * noCf Sanpl es,
uint32_t downSanpl eRat i o,
PS3000A RATI O MODE downSanpl eRat i oMbde,
uint32_t segnent | ndex,
intl6 t * overfl ow

)

This function allows you to make a deferred data-collection request, which will later be
executed, and the arguments validated, when you call ps3000aRunBlock() in block
mode. The advantage of this function is that the driver makes contact with the scope
only once, when you call ps3000aRunBlock(), compared with the two contacts that
occur when you use the conventional ps3000aRunBlock(), ps3000aGetValues() calling
sequence. This slightly reduces the dead time between successive captures in block
mode.

After calling ps3000aRunBlock(), you can optionally use ps3000aGetValues() to
request further copies of the data. This might be required if you wish to display the
data with different data reduction settings.

Applicability |Block mode
Arguments handl e, the handle of the device

startlndex, see ps3000aGetValues()

* noCf Sanpl es, see ps3000aGetValues()

downSanpl eRati 0, see ps3000aGetValues()

downSanpl eRat i oMbde, see ps3000aGetValues()

segnent | ndex, see ps3000aGetValues()

* overflow, see ps3000aGetValuesBulk()
Returns PI CO_ X

Pl CO_PONER_SUPPLY_CONNECTED

Pl CO_PONER_SUPPLY_NOT_CONNECTED

Pl CO_I NVALI D_HANDLE

Pl CO_| NVALI D_PARAMETER

Pl CO_DRI VER_FUNCTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

49

4.26 ps3000aGetValuesOverlappedBulk
Pl CO _STATUS ps3000aCet Val uesOver | appedBul k

«
intl6 t
ui nt 32_t
uint32_t
uint32_t

handl e,
startl ndex,

* noCf Sanpl es,
downSanpl eRat i o,

PS3000A RATI O MODE downSanpl eRat i oMbde,

ui nt 32_t

uint32_t

intl1l6 t
)

fr onSegnent | ndex,
t oSegnent | ndex,
* overfl ow

This function allows you to make a deferred data-collection request, which will later be
executed, and the arguments validated, when you call ps3000aRunBlock() in rapid
block mode. The advantage of this method is that the driver makes contact with the
scope only once, when you call ps3000aRunBlock(), compared with the two contacts
that occur when you use the conventional ps3000aRunBlock(),
ps3000aGetValuesBulk() calling sequence. This slightly reduces the dead time

between successive captures in rapid block mode.

After calling ps3000aRunBlock(), you can optionally use ps3000aGetValues() to

request further copies of the data. This might be required if you wish to display the
data with different data reduction settings.

Applicability

Arguments

Returns

Rapid block mode

handl e, the handle of the device

startl ndex, see ps3000aGetValues()

* noOF Sanpl es, see ps3000aGetValues()
downSanpl eRati o, see ps3000aGetValues()
downSanpl eRat i oMbde, see ps3000aGetValues()
f ronSegnent | ndex, see ps3000aGetValuesBulk()

t oSegnent | ndex, see ps3000aGetValuesBulk()
* overfl ow, see ps3000aGetValuesBulk()

Pl CO &K

Pl CO PONER_SUPPLY_ CONNECTED

Pl CO PONER_SUPPLY_NOT_CONNECTED

Pl CO | NVALI D_HANDLE

Pl CO_| NVALI D_PARAVETER

Pl CO DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

ps3000apg.en r13

50 API functions

4.27 ps3000aGetValuesTriggerTimeOffsetBulk
Pl CO_STATUS ps3000aCet Val uesTri gger Ti mef f set Bul k

(
intl6_ t handl e,
ui nt 32_t * timesUpper,
uint32_t * timesLower,
PS3000A TIME_UNITS * tineUnits,
uint32_t f r onSegnent | ndex,
ui nt 32_t t oSegnent | ndex

)

This function retrieves the time offsets, as lower and upper 32-bit values, for
waveforms obtained in rapid block mode.

This function is provided for use in programming environments that do not support 64-
bit integers. If your programming environment supports this data type, it is easier to
use ps3000aGetValuesTriggerTimeOffsetBulk64().

Applicability |Rapid block mode

Arguments
handl e, the handle of the device

* timesUpper, an array of integers. On exit, the most significant 32 bits of the time
offset for each requested segment index. ti mes[0] will hold the

f ronSegnent | ndex time offset and the last ti nes index will hold the

t oSegnent I ndex time offset. The array must be long enough to hold the nhumber of
requested times.

* tinmesLower, an array of integers. On exit, the least-significant 32 bits of the time
offset for each requested segment index. ti mes[0] will hold the

f ronSegnent | ndex time offset and the last ti nes index will hold the

t oSegnent | ndex time offset. The array size must be long enough to hold the
number of requested times.

* tinmeUnits, an array of integers. The array must be long enough to hold the
number of requested times. On exit, t i meUni t s[0] will contain the time unit for
f ronSegnent | ndex and the last element will contain the time unit for

t oSegnent | ndex. Refer to ps3000aGetTriggerTimeOffset() for specific figures

f ronSegnent | ndex, the first segment for which the time offset is required

t oSegnent | ndex, the last segment for which the time offset is required. If
t oSegnent | ndex is less than f r onSegnent | ndex then the driver will wrap around
from the last segment to the first.
Returns PI CO_ K

Pl CO_PONER_SUPPLY_CONNECTED

Pl CO_PONER_SUPPLY_NOT_CONNECTED

Pl CO_| NVALI D_HANDLE

Pl CO_NOT_USED | N_THI S_CAPTURE_MODE

Pl CO_NOT_RESPONDI NG

Pl CO_NULL_PARAMETER

Pl CO_DEVI CE_SAMPLI NG

Pl CO_SEGVENT_OUT_OF_RANGE

Pl CO_NO _SAMPLES_AVAI LABLE

Pl CO_DRI VER_FUNCTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 51

4.28 ps3000aGetValuesTriggerTimeOffsetBulké64
Pl CO_STATUS ps3000aGet Val uesTri gger Ti mef f set Bul k64

(
intl6_ t handl e,
int64 t * tines,
PS3000A TIME UNITS * tineUnits,
ui nt 32_t fr onSegnent | ndex,
uint32_t t oSegnent | ndex
)
This function retrieves the 64-bit time offsets for waveforms captured in rapid block
mode.

A 32-bit version of this function, ps3000aGetValuesTriggerTimeOffsetBulk(), is
available for use with programming languages that do not support 64-bit integers.

Applicability |Rapid block mode

Arguments handl e, the handle of the device

* tines, an array of integers. On exit, this will hold the time offset
for each requested segment index. ti nes[0] will hold the time
offset for f r omSegnent | ndex, and the lastti nmes index will hold
the time offset for t o0Segnent | ndex. The array must be long enough
to hold the number of times requested.

* tinmeUnits, an array of integers long enough to hold the number
of requested times. ti neUni t s[0] will contain the time unit for

f r onSegnent | ndex, and the last element will contain the

t oSegnent | ndex. Refer to ps3000aGetTriggerTimeOffset64() for
specific figures.

f r onSegnent | ndex, the first segment for which the time offset is
required. The results for this segment will be placed in ti mes[0] and
timeUnits[O0].

t oSegnent | ndex, the last segment for which the time offset is
required. The results for this segment will be placed in the last
elements of theti mes and ti neUnits arrays. If t 0Segnent | ndex
is less than f r onSegment | ndex then the driver will wrap around
from the last segment to the first.
Returns PI CO_ X
Pl CO_PONER_SUPPLY_CONNECTED
Pl CO_PONER_SUPPLY_NOT_CONNECTED
Pl CO_| NVALI D_HANDLE
Pl CO_NOT_USED | N_TH S_CAPTURE_MODE
Pl CO_NOT_RESPONDI NG
Pl CO_NULL_PARAMETER
Pl CO_DEVI CE_SAMPLI NG
Pl CO_SEGQVENT_OUT_OF_RANGE
Pl CO_NO _SAMPLES_AVAI LABLE
Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

52 API functions

4.29 ps3000aHoldOff
Pl CO_STATUS ps3000aHol dOF f
(

intl6 t handl e,
ui nt 64t hol dof f,
PS3000A HOLDOFF_TYPE type

)

This function is for backward compatibility only and is not currently used.

Applicability |None
Arguments Undefined
Returns Undefined

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 53

4.30 ps3000alsReady
Pl CO_STATUS ps3000al sReady

int16_t handl e,
intlé t * ready
)

This function may be used instead of a callback function to receive data from
ps3000aRunBlock(). To use this method, pass a NULL pointer as the | pReady
argument to ps3000aRunBlock(). You must then poll the driver to see if it has finished
collecting the requested samples.

Applicability Block mode
Arguments handl e, the handle of the required device

* ready, output: indicates the state of the collection. If zero, the

device is still collecting. If non-zero, the device has finished

collecting and ps3000aGetValues() can be used to retrieve the data.
Returns PI CO_ X

Pl CO_| NVALI D_HANDLE

Pl CO DRI VER_FUNCTI ON

Pl CO NULL_PARAMETER

Pl CO_ NO SAMPLES AVAI LABLE

Pl CO_CANCELLED

Pl CO_NOT_RESPONDI NG

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

54

API functions

4.31 ps3000alsTriggerOrPulseWidthQualifierEnabled
Pl CO_STATUS ps3000al sTri gger O Pul seW dt hQual i fi er Enabl ed

intl6 t
intl1l6 t
intl6 t

)

handl e,

* triggerEnabl ed,
* pul seW dt hQual i fi er Enabl ed

This function discovers whether a trigger, or pulse width triggering, is enabled.

Applicability

Arguments

Returns

Call after setting up the trigger, and just before calling either
ps3000aRunBlock() or ps3000aRunStreaming().

handl e, the handle of the required device

* triggerEnabl ed, on exit, indicates whether the trigger will
successfully be set when ps3000aRunBlock() or
ps3000aRunStreaming() is called. A non-zero value indicates that the
trigger is set, zero that the trigger is not set.

* pul seW dt hQual i fi er Enabl ed, on exit, indicates whether the
pulse width qualifier will successfully be set when ps3000aRunBlock()
or ps3000aRunStreaming() is called. A non-zero value indicates that
the pulse width qualifier is set, zero that the pulse width qualifier is
not set.

Pl CO K

Pl CO_| NVALI D_HANDLE

Pl CO NULL_PARANMETER

Pl CO DRI VER_FUNCTI ON

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

55

4.32 ps3000aMaximumValue

Pl CO STATUS ps3000aMaxi nunval ue

(
intl1l6 t handl| e,
intlé_t * val ue

)

This function returns the maximum ADC count returned by calls to get values.

Applicability |All modes

Arguments handl e, the handle of the required device

* val ue, returns the maximum ADC value

Returns PI CO_OK
Pl CO_USER_CALLBACK
Pl CO_| NVALI D_HANDLE

Pl CO_TOO MANY_ SEGVENTS

Pl CO_MVEMORY
Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

ps3000apg.en r13

56 API functions

4.33 ps3000aMemorySegments
Pl CO_STATUS ps3000aMenor ySegnent s

int16_t handl e,

ui nt 32_t nSegnment s,

int32_t * nMaxSanpl es
)

This function sets the number of memory segments that the scope will use.

When the scope is opened, the number of segments defaults to 1, meaning that each
capture fills the scope's available memory. This function allows you to divide the
memory into a number of segments so that the scope can store several waveforms
sequentially.

Applicability |All modes
Arguments handl e, the handle of the required device.

nSegnent s, the number of segments required, from 1 to the value
of maxsegnent s returned by ps3000aGetMaxSegments().

* nMaxSanpl es, on exit, the number of samples available in each

segment. This is the total number over all channels, so if more than

one channel is in use then the number of samples available to each

channel is nMaxSanpl es divided by the number of channels.
Returns PI CO_ K

Pl CO USER CALLBACK

Pl CO_| NVALI D_HANDLE

Pl CO TOO MANY_ SEGVENTS

Pl CO_MEMORY

Pl CO DRI VER_FUNCTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

57

4.34

ps3000aMinimumValue
Pl CO STATUS ps3000aM ni nunval ue

«
intl6 t
intl6 t

)

handl| e,
* val ue

This function returns the minimum ADC count returned by calls to ps3000aGetValues()
and related functions

Applicability
Arguments

Returns

All modes

handl e, the handle of the required device

* val ue, returns the minimum ADC value
Pl CO K

Pl CO USER CALLBACK

Pl CO_| NVALI D_HANDLE

Pl CO TOO MANY_ SEGVENTS

Pl CO_MEMORY

Pl CO DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

ps3000apg.en r13

58 API functions

4.35 ps3000aNoOfStreamingValues
Pl CO_STATUS ps3000aNoCr St reani ngVal ues

intl6 t handl e,
uint32_t * noO Val ues

)

This function returns the number of samples available after data collection in
streaming mode. Call it after calling ps3000aStop().

Applicability |[Streaming mode

Arguments handl e, the handle of the required device

* noOXf Val ues, on exit, the number of samples

Returns PI CO X
Pl CO_| NVALI D_HANDLE
Pl CO NULL_ PARAMETER
Pl CO_NO _SAMPLES AVAI LABLE
Pl CO_NOT_USED
Pl CO_BUSY
Pl CO DRI VER_FUNCTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 59

4.36 ps3000aOpenUnit
Pl CO_STATUS ps3000aQCpenUni t

intl6_t * handl e,
int8t * serial

)

This function opens a PicoScope 3000 Series oscilloscope attached to the computer.
The maximum number of units that can be opened depends on the operating system,
the kernel driver and the computer. If ps3000aOpenUnit() is called without the power
supply connected, the driver returns Pl CO_POAER_SUPPLY_NOT_CONNECTED.

Applicability |All modes

Arguments * handl e, on exit, the result of the attempt to open a scope:
-1 : if the scope fails to open
0 : if no scope is found
> 0 : a number that uniquely identifies the scope
If a valid handle is returned, it must be used in all subsequent calls
to API functions to identify this scope.

* serial, onentry, anull-terminated string containing the serial
number of the scope to be opened. If seri al is NULL then the
function opens the first scope found; otherwise, it tries to open the
scope that matches the string.
Returns PI CO_ X
Pl CO_OS_NOT_SUPPCORTED
Pl CO_ OPEN_OPERATI ON_| N_PROGRESS
Pl CO_EEPROM CORRUPT
Pl CO KERNEL_ DRI VER TOO QLD
Pl CO FPGA FAI L
Pl CO_ MEMORY_CLOCK FREQUENCY
Pl CO FW FAI L
Pl CO MAX _UNI TS OPENED
Pl CO_NOT_FQOUND (if the specified unit was not found)
Pl CO_NOT_RESPONDI NG
Pl CO_ MEMORY_FAI L
Pl CO_ANALOG BOARD
Pl CO CONFI G_FAI L_AWG
PI CO | NI TI ALI SE_FPGA
Pl CO PONER SUPPLY_NOT CONNECTED

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

60 API functions

4.37 ps3000aOpenUnitAsync
Pl CO_STATUS ps3000aCpenUni t Async

intlé t * status,
int8t * serial

)

This function opens a scope without blocking the calling thread. You can find out when

it has finished by periodically calling ps3000aOpenUnitProgress() until that function
returns a non-zero value.

Applicability |All modes

Arguments * status, a status code:
0 if the open operation was disallowed because another open
operation is in progress
1 if the open operation was successfully started

* serial, see ps3000a0OpenUnit()
Returns PI CO_ K

Pl CO_OPEN_OPERATI ON_| N_PROGRESS
Pl CO_OPERATI ON_FAI LED

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 61

4.38 ps3000aOpenUnitProgress
Pl CO_STATUS ps3000aCpenUni t Progress

intl6_t * handl e,
intl6 t * progressPercent,
intlé_t * conplete

)

This function checks on the progress of a request made to ps3000a0OpenUnitAsync() to
open a scope.

Applicability |Use after ps3000aOpenUnitAsync()

Arguments * handl e, see ps3000aOpenUnit(). This handle is valid only if the
function returns PI CO_CK.

* progressPercent, on exit, the percentage progress towards
opening the scope. 100% implies that the open operation is
complete.

* conpl ete, setto 1 when the open operation has finished
Returns PI CO_K

Pl CO NULL PARAMETER

Pl CO_OPERATI ON_FAI LED

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

62 API functions

4.39 ps3000aPingUnit
Pl CO_STATUS ps3000aPi ngUni t

intl6_t handl e
)

This function can be used to check that the already opened device is still connected to
the USB port and communication is successful.

Applicability |All modes

Arguments handl e, the handle of the required device

Returns PI CO X
Pl CO_| NVALI D_HANDLE
Pl CO DRI VER_FUNCTI ON
Pl CO_POAER_SUPPLY_ CONNECTED
Pl CO_POAER_SUPPLY_NOT CONNECTED
Pl CO_BUSY
Pl CO_NOT_RESPONDI NG

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 63

4.40 ps3000aRunBlock
Pl CO_STATUS ps3000aRunBl ock

(
int16_t handl e,
int32 t noCt PreTri gger Sanpl es,
int32_t noOf Post Tri gger Sanpl es,
uint32_t ti nebase,
int16_t over sanpl e,
int32 t * tinmel ndi sposedMs,
ui nt 32_t segment | ndex,
ps3000aBl ockReady | pReady,
voi d * pPar anet er
)

This function starts collecting data in block mode. For a step-by-step guide to this
process, see Using block mode.

The number of samples is determined by noOf Pr eTri gger Sanpl es and
noOf Post Tri gger Sanpl es (see below for details). The total number of samples
must not be more than the size of the segment referred to by segnent | ndex.

Applicability |Block mode, rapid block mode
Arguments

handl e, the handle of the required device.

nof PreTri gger Sanpl es, the number of samples to return before the trigger
event. If no trigger has been set then this argument is ignored and
noOr Post Tri gger Sanpl es specifies the maximum number of samples to collect.

noOr Post Tri gger Sanpl es, the number of samples to be taken after a trigger
event. If no trigger event has been set then this specifies the maximum number of
samples to be taken. If a trigger condition has been set, this specifies the humber of
samples to be taken after a trigger has fired, and the number of samples to be
collected is then: -

noCf PreTri gger Sanpl es + noOf Post Tri gger Sanpl es

ti nebase, a number in the range 0 to 232-1. See the guide to calculating timebase
values.

over sanpl e, not used.

* timel ndi sposedMs, on exit, the time, in milliseconds, that the scope will spend
collecting samples. This does not include any auto trigger timeout. If this pointer is
null, nothing will be written here.

segnent | ndex, zero-based, specifies which memory segment to use.

| pReady, a pointer to the ps3000aBlockReady() callback function that the driver will
call when the data has been collected. To use the ps3000alsReady() polling method
instead of a callback function, set this pointer to NULL.

* pParanet er, a void pointer that is passed to the ps3000aBlockReady() callback
function. The callback can use this pointer to return arbitrary data to the application.
Returns PI CO_OK

Pl CO PONER_SUPPLY_ CONNECTED

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

64

API functions

Pl CO_PONER_SUPPLY_NOT_CONNECTED

Pl CO BUFFERS_NOT_SET (in overlapped mode)

Pl CO_| NVALI D_HANDLE

Pl CO_USER_CALLBACK

Pl CO_SEGVENT_OUT_OF RANGE

Pl CO_I NVALI D_CHANNEL

Pl CO_I NVALI D_TRI GGER_CHANNEL

Pl CO_| NVALI D_CONDI TI ON_CHANNEL

Pl CO_TOO_MANY_SAMPLES

Pl CO_| NVALI D_TI MEBASE

Pl CO_NOT_RESPONDI NG

Pl CO_CONFI G_FAI L

Pl CO_| NVALI D_PARAMETER

Pl CO_NOT_RESPONDI NG

Pl CO_TRI GGER_ERRCR

Pl CO_DRI VER_FUNCTI ON

Pl CO_FW FAI L

Pl CO_NOT_ENOUGH_SEGVENTS (in bulk mode)

Pl CO_ PULSE W DTH_QUALI FI ER

Pl CO_SEGQVENT_QUT_OF_RANGE (in overlapped mode)
Pl CO_STARTI NDEX_| NVALI D (in overlapped mode)
Pl CO_| NVALI D_SAMPLERATI O (in overlapped mode)
Pl CO_CONFI G_FAI L

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 65

4.41 ps3000aRunStreaming
Pl CO_STATUS ps3000aRunsSt r eam ng

(
intl6 t handl e,
uint32_t * sanpl el nterval,
PS3000A TIME UNITS sanpl el nterval Ti neUnits,
ui nt 32_t maxPr eTri gger Sanpl es,
uint32_t maxPost Tri gger Sanpl es,
intl1l6 t aut oSt op,
uint32_t downSanpl eRat i o,
PS3000A RATI O MODE downSanpl eRat i oMbde,
uint32_t overvi ewBufferSi ze

)

This function tells the oscilloscope to start collecting data in streaming mode. When
data has been collected from the device it is downsampled if necessary and then
delivered to the application. Call ps3000aGetStreamingLatestValues() to retrieve the
data. See Using streaming mode for a step-by-step guide to this process.

When a trigger is set, the total number of samples stored in the driver is the sum of
maxPr eTri gger Sanpl es and maxPost Tri gger Sanpl es. If aut oSt op is false then
this will become the maximum number of samples without downsampling.

Applicability |[Streaming mode

Arguments
handl e, the handle of the required device.

* sanpl el nterval , on entry, the requested time interval between samples; on
exit, the actual time interval used.

sanpl el nterval Ti neUni ts, the unit of time used for sanpl el nt erval . Use one
of these enumerated types:

PS3000A_FS

PS3000A_PS

PS3000A_NS

PS3000A_US

PS3000A_ M5

PS3000A_S

maxPr eTri gger Sanpl es, the maximum number of raw samples before a trigger
event for each enabled channel. If no trigger condition is set this argument is ignored.

maxPost Tri gger Sanpl es, the maximum number of raw samples after a trigger
event for each enabled channel. If no trigger condition is set, this argument states the
maximum number of samples to be stored.

aut oSt op, a flag that specifies if the streaming should stop when all of maxSanpl es
have been captured.

downSanpl eRati 0: see ps3000aGetValues()
downSanpl eRat i oMbde: see ps3000aGetValues()

overvi ewBuf fer Si ze, the size of the overview buffers. These are temporary
buffers used for storing the data before returning it to the application. The size is the
same as the buf f er Lt h value passed to ps3000aSetDataBuffer().

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

66

API functions

Returns

Pl CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO_ETS_MODE_SET

Pl CO_USER_CALLBACK

Pl CO_NULL_PARAVETER

Pl CO_| NVALI D_PARAVETER

Pl CO_STREAM NG_FAI LED

Pl CO_NOT_RESPONDI NG

Pl CO_POAER_SUPPLY_CONNECTED
Pl CO_PONER_SUPPLY_NOT_CONNECTED
Pl CO_TRI GGER_ERRCR

Pl CO_I NVALI D_SAMPLE_| NTERVAL
Pl CO_| NVALI D_BUFFER

Pl CO_DRI VER_FUNCTI ON

Pl CO_FW FAI L

Pl CO_MENORY

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 67

4.42 ps3000aSetBandwidthFilter
Pl CO_STATUS ps3000aSet Bandwi dt hFi |l t er

intl6 t handl e,
PS3000A CHANNEL channel ,
PS3000A BANDW DTH_LI M TER bandwi dt h

)

This function sets the bandwidth limiter for a specified channel.

Applicability All modes. PicoScope 3400 and 3000D MSO Series scopes only.
Arguments handl e, the handle of the required device

channel , the channel to be configured. Use one of the following
enumerated types:
PS3000A CHANNEL _A: Channel A input
PS3000A CHANNEL_B: Channel B input
PS3000A CHANNEL C. Channel C input (if present)
PS3000A CHANNEL D Channel D input (if present)

bandwi dt h, either one of these values:
PS3000A BW FULL
PS3000A BW 20MHZ
Returns PI CO_K
Pl CO | NVALI D_HANDLE
Pl CO_| NVALI D_CHANNEL
Pl CO | NVALI D_BANDW DTH

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

68 API functions

4.43 ps3000aSetChannel
Pl CO_STATUS ps3000aSet Channel

(
intl6 t handl e,
PS3000A CHANNEL channel ,
intl6 t enabl ed,
PS3000A COUPLI NG type,
PS3000A RANGE range,
fl oat anal ogueO f set
)

This function specifies whether an input channel is to be enabled, its input coupling
type, voltage range and analog offset.

Applicability All modes
Arguments handl e, the handle of the required device

channel , the channel to be configured. Use one of the following
enumerated types:

PS3000A CHANNEL_A: Channel A input

PS3000A CHANNEL_B: Channel B input

PS3000A CHANNEL_C: Channel C input

PS3000A CHANNEL_D: Channel D input

enabl ed, whether or not to enable the channel (TRUE or FALSE)

t ype, the impedance and coupling type. The values are:
PS3000A AC: 1 megohm impedance, AC coupling. The channel
accepts input frequencies from about 1 hertz up to its maximum
-3 dB analog bandwidth.

PS3000A DC: 1 megohm impedance, DC coupling. The scope
accepts all input frequencies from zero (DC) up to its maximum
-3 dB analog bandwidth.

range, the input voltage range, one of these enumerated types:
PS3000A 50Mv: £50 mV
PS3000A_100Mv: £100 mV
PS3000A _200MWv: £200 mV
PS3000A _500Mv: £500 mV

PS3000A_1V: +1V
PS3000A 2V £2V
PS3000A 5V £5V

PS3000A_10V: +10V
PS3000A_20V: 20V

anal ogueOF f set, a voltage to add to the input channel before
digitization. The allowable range of offsets depends on the input
range selected for the channel, as obtained from
ps3000aGetAnalogueOffset().
Returns PI CO_ X
Pl CO_USER_CALLBACK
Pl CO_| NVALI D_HANDLE
Pl CO_I NVALI D_CHANNEL
Pl CO_| NVALI D_VOLTAGE_RANGE
Pl CO_I NVALI D_COUPLI NG
Pl CO_| NVALI D_ANALOGUE_CFFSET
Pl CO_DRI VER_FUNCTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 69

4.44 ps3000aSetDataBuffer
Pl CO _STATUS ps3000aSet Dat aBuf f er

(
intl6 t handl e,
PS3000A CHANNEL channel ,
intl6 t * puffer,
int32 t buf f er Lt h,
uint32_t segnent | ndex,
PS3000A RATI O MODE node

)

This function tells the driver where to store the data, either unprocessed or
downsampled, that will be returned after the next call to one of the Get Val ues
functions. The function allows you to specify only a single buffer, so for aggregation
mode, which requires two buffers, you need to call ps3000aSetDataBuffers() instead.

You must allocate memory for the buffer before calling this function.

Applicability Block, rapid block and streaming modes. All downsampling modes
except aggregation.
Arguments handl e, the handle of the required device

channel , the channel you want to use with the buffer. Use one of
these enumerated types:

PS3000A CHANNEL_A

PS3000A CHANNEL B

PS3000A CHANNEL C

PS3000A CHANNEL D

To set the buffer for a digital port, use one of these enumerated
types:
PS3000A DI d TAL_PORTO
PS3000A DI G TAL_PORT1

0x80
0x81

* puf fer, the location of the buffer
buf f er Lt h, the size of the buf f er array

segnent | ndex, the number of the memory segment to be used

node, the downsampling mode. See ps3000aGetValues() for the
available modes, but note that a single call to
ps3000aSetDataBuffer() can only associate one buffer with one
downsampling mode. If you intend to call ps3000aGetValues() with
more than one downsampling mode activated, then you must call
ps3000aSetDataBuffer() several times to associate a separate buffer
with each downsampling mode.

Returns PI CO_ XX
Pl CO | NVALI D_HANDLE
Pl CO_| NVALI D_CHANNEL
Pl CO_RATI O_MODE_NOT_SUPPCRTED
Pl CO_SEGQVENT_QUT_OF RANGE
Pl CO DRI VER_FUNCTI ON
Pl CO | NVALI D_PARAMETER

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

70 API functions

4.45 ps3000aSetDataBuffers
Pl CO_STATUS ps3000aSet Dat aBuf fers

(
intl6 t handl e,
PS3000A CHANNEL channel ,
intl6 t * puf f er Max,
intl1l6 t * pufferMn,
int32_t buf f er Lt h,
uint32_t segnent | ndex,
PS3000A RATI O MODE node

)

This function tells the driver the location of one or two buffers for receiving data. You
need to allocate memory for the buffers before calling this function. If you do not need
two buffers, because you are not using aggregate mode, then you can optionally use
ps3000aSetDataBuffer() instead.

Applicability |Block and streaming modes with aggregation.
Arguments handl e, the handle of the required device.

channel , the channel for which you want to set the buffers. Use
one of these constants:

PS3000A CHANNEL_A

PS3000A CHANNEL B

PS3000A CHANNEL C

PS3000A CHANNEL D

To set the buffer for a digital port, use one of these enumerated
types:
PS3000A DI A TAL_PORTO
PS3000A DI G TAL_PORT1

0x80
0x81

* buf f er Max, a buffer to receive the maximum data values in
aggregation mode, or the non-aggregated values otherwise.

* pufferM n, a bufferto receive the minimum aggregated data
values. Not used in other downsampling modes.

buf ferLt h, the size of the buf f er Max and buf fer M n arrays.

segnent | ndex, the number of the memory segment to be used

node, see ps3000aGetValues()

Returns PI CO_ XK
Pl CO | NVALI D_HANDLE
Pl CO_| NVALI D_CHANNEL
Pl CO_RATI O MODE_NOT_SUPPORTED
Pl CO_SEGVENT OUT OF RANGE
Pl CO DRI VER_FUNCTI ON
Pl CO | NVALI D_PARAMETER

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 71

4.46 ps3000aSetDigitalPort
Pl CO STATUS ps3000aSet Di gi t al Port

(
intl6 t handl e,
PS3000A DI G TAL_PORT port,
intl6 t enabl ed,
int16_t | ogi cl evel
)

This function is used to enable the digital port and set the logic level (the voltage at
which the state transitions from 0 to 1).

Applicability [Block and streaming modes with aggregation.
MSOs only.

Arguments handl e, the handle of the required device.

port, identifies the port for digital data:
PS3000A DI A TAL_PORTO = 0x80 (digital channels 0-7)
PS3000A DI G TAL_PORT1 0x81 (digital channels 8-15)

enabl ed, whether or not to enable the channel. The values are:
TRUE: enable
FALSE: do not enable

| ogi cl evel , the voltage at which the state transitions between 0
and 1. Range: -32767 (-5 V) to 32767 (5 V).
Returns PI CO_ XK
Pl CO_I NVALI D_HANDLE
Pl CO_I NVALI D_CHANNEL
Pl CO_RATI O_MODE_NOT_SUPPORTED
Pl CO_SEGVENT_QUT_OF_RANGE
Pl CO_DRI VER_FUNCTI ON
Pl CO_I NVALI D_PARAMETER

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

72 API functions

4.47 ps3000aSetEts
Pl CO_STATUS ps3000aSet Et s

(
int16_t handl e,
PS3000A ETS MODE node,
int16_t et sCycl es,
intl1l6 t etslnterl eave,
int32_t * sanpl eTi nePi coseconds
)

This function is used to enable or disable ETS (equivalent-time sampling) and to set
the ETS parameters. See ETS overview for an explanation of ETS mode.

Applicability |Block mode
Arguments
handl e, the handle of the required device

node, the ETS mode. Use one of these values:
PS3000A ETS OFF - disables ETS
PS3000A ETS FAST - enables ETS and provides et sCycl es of data, which may
contain data from previously returned cycles
PS3000A ETS SLOW - enables ETS and provides fresh data every et sCycl es.
This mode takes longer to provide each data set, but the data sets are more stable
and are guaranteed to contain only new data.

et sCycl es, the number of cycles to store: the driver then selects et sl nt er| eave
cycles to give the most uniform spread of samples. Range: between two and five
times the value of et sl nt erl eave, and not more than the et sCycl es value
returned by ps3000aGetMaxEtsValues().

et sl nterl eave, the number of waveforms to combine into a single ETS capture.
The maximum allowed value for the selected device is returned by
ps3000aGetMaxEtsValues() in the et sl nt er| eave argument.

* sanpl eTi mePi coseconds, on exit, the effective sampling interval of the ETS
data. For example, if the captured sample time is 4 ns and et sl nterl eave is 10,
the effective sample time in ETS mode is 400 ps.
Returns PI CO_OK

Pl CO USER CALLBACK

Pl CO_| NVALI D_HANDLE

Pl CO | NVALI D_PARAMETER

Pl CO DRI VER_FUNCTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 73

4.48 ps3000aSetEtsTimeBuffer
Pl CO_STATUS ps3000aSet Et sTi neBuf f er

int16_t handl e,

inté4 t * buffer,

int32_t bufferLth
)

This function tells the driver where to find your application's ETS time buffers. These
buffers contain the 64-bit timing information for each ETS sample after you run a
block-mode ETS capture.

Applicability |[ETS mode only.
If your programming language does not support 64-bit data, use the

32-bit version ps3000aSetEtsTimeBuffers() instead.
Arguments handl e, the handle of the required device

* puffer, an array of 64-bit words, each representing the time in
picoseconds at which the sample was captured

buf f er Lt h, the size of the buffer array
Returns Pl CO_K

PI CO_| NVALI D_HANDLE

Pl CO NULL PARAMETER

PI CO_DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

74 API functions

4.49 ps3000aSetEtsTimeBuffers

Pl CO_STATUS ps3000aSet Et sTi meBuf fers
(

int16_t handl e,

uint32_ t * tineUpper,

uint32_t * tinmelLower,

int32 t bufferLth

)

This function tells the driver where to find your application's ETS time buffers. These
buffers contain the timing information for each ETS sample after you run a block-mode
ETS capture. There are two buffers containing the upper and lower 32-bit parts of the
timing information, to allow programming languages that do not support 64-bit data to
retrieve the timings.

Applicability ETS mode only.

If your programming language supports 64-bit data then you can use
ps3000aSetEtsTimeBuffer() instead.

Arguments handl e, the handle of the required device

* timeUpper, an array of 32-bit words, each representing the
upper 32 bits of the time in picoseconds at which the sample was
captured

* tinmeLower, an array of 32-bit words, each representing the
lower 32 bits of the time in picoseconds at which the sample was
captured

buf f er Lt h, the size of theti neUpper andti neLower arrays
Returns PI CO_OK

Pl CO | NVALI D_HANDLE

Pl CO_ NULL_PARAMETER

Pl CO DRI VER _FUNCTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 75

4.50 ps3000aSetNoOfCaptures
Pl CO_STATUS ps3000aSet NoOf Capt ur es
intl6_t handl e,

uint32_t nCaptures
)

This function sets the number of captures to be collected in one run of rapid block
mode. If you do not call this function before a run, the driver will capture only one
waveform. Once a value has been set, the value remains constant unless changed.
Applicability |Rapid block mode

Arguments handl e, the handle of the device

nCapt ures, the number of waveforms to capture in one run
Returns Pl CO_K

Pl CO_| NVALI D_HANDLE

Pl CO_| NVALI D_PARAMETER

Pl CO DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

76 API functions

4.51 ps3000aSetPulseWidthDigitalPortProperties
Pl CO STATUS ps3000aSet Pul seW dt hDi gi t al Port Properties

intl6 t handl e,
PS3000A DI G TAL_CHANNEL DI RECTI ONS * directions
intl6 t nDi recti ons

)

This function will set the individual digital channels' pulse-width trigger directions.
Each trigger direction consists of a channel name and a direction. If the channel is not
included in the array of PS3000A DI G TAL_CHANNEL DI RECTI ONS the driver
assumes the digital channel's pulse-width trigger direction is

PS3000A DI G TAL_DONT _CARE.

Applicability |All modes
Arguments handl e, the handle of the required device.

* directions, a pointerto an array of

PS3000A DI G TAL_CHANNEL_DI RECTI ONS structures describing the
requested properties. The array can contain a single element
describing the properties of one channel, or a number of elements
describing several digital channels. If di recti ons is NULL, digital
pulse-width triggering is switched off. A digital channel that is not
included in the array will be set to PS3000A DI G TAL_DONT_CARE.

nDi recti ons, the number of digital channel directions being
passed to the driver.
Returns PI CO_OK
Pl CO_| NVALI D_HANDLE
Pl CO_DRI VER_FUNCTI ON
Pl CO_| NVALI D_DI G TAL_CHANNEL
Pl CO_| NVALI D_DI G TAL_TRI GGER_DI RECTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 77

4.52 ps3000aSetPulseWidthQualifier
Pl CO_STATUS ps3000aSet Pul seW dt hQual i fi er

(
int16_t handl e,
PS3000A PWQ CONDI TI ONS * conditions,
int16_t nCondi ti ons,
PS3000A THRESHOLD DI RECTION direction,
uint32_t | ower,
uint32_t upper,
PS3000A PULSE_W DTH_TYPE type

)

This function sets up pulse-width qualification, which can be used on its own for pulse-
width triggering or combined with level triggering or window triggering to produce
more complex triggers. The pulse-width qualifier is set by defining one or more
structures that are then ORed together. Each structure is itself the AND of the states of
one or more of the inputs. This AND-OR logic allows you to create any possible
Boolean function of the scope's inputs.

Applicability |All modes
Arguments
handl e, the handle of the required device

* conditions, an array of PS3000A PWQ CONDI Tl ONS structures* specifying the
conditions that should be applied to each channel. In the simplest case, the array
consists of a single element. When there are several elements, the overall trigger
condition is the logical OR of all the elements. If condi ti ons is NULL then the
pulse-width qualifier is not used.

nCondi ti ons, the number of elements in the condi ti ons array. If nCondi ti ons
is zero then the pulse-width qualifier is not used.
Range: 0 to PS3000A MAX PULSE W DTH QUALI FI ER_ COUNT.

di rection, the direction of the signal required for the pulse width trigger to fire.
See PS3000A THRESHOLD DI RECTI ON const ant s for the list of possible values.
Each channel of the oscilloscope (except the EXT input) has two thresholds for each
direction—for example, PS3000A RI SI NGand PS3000A RI SI NG LOAER—so that
one can be used for the pulse-width qualifier and the other for the level trigger. The
driver will not let you use the same threshold for both triggers; so, for example, you
cannot use PS3000A RI SI NG as the di r ecti on argument for both

ps3000aSetTriggerConditions() and ps3000aSetPulseWidthQualifier() at the same
time. There is no such restriction when using window triggers.

| ower, the lower limit of the pulse-width counter, measured in samples.

upper, the upper limit of the pulse-width counter, measured in samples. This
parameter is used only when the type is set to PS3000A PW TYPE | N RANGE or
PS3000A PW TYPE OUT_OF RANCE.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

78 API functions

Arguments type, the pulse-width type, one of these constants:
PS3000A PW TYPE_NONE: do not use the pulse width qualifier
PS3000A PW TYPE_LESS THAN: pulse width less than | ower
PS3000A PW TYPE_GREATER THAN. pulse width greater than
| ower
PS3000A PW TYPE_| N RANGE: pulse width between | ower and
upper
PS3000A PW TYPE_QUT_OF RANGCE: pulse width not between
| ower and upper

Returns Pl CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO_USER_CALLBACK

Pl CO_CONDI Tl ONS

Pl CO_PULSE W DTH_QUALI FI ER
Pl CO_DRI VER_FUNCTI ON

*Note: using this function the driver will convert the PS3000A PWQ CONDI Tl ONS into
a PS3000A PWQ CONDI TI ONS_V2 and will set the condition for digital to
PS3000A DI G TAL_DONT_CARE.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 79

4.52.1 PS3000A_PWQ_CONDITIONS structure

A structure of this type is passed to ps3000aSetPulseWidthQualifier() in the
condi ti ons argument to specify the trigger conditions. It is defined as follows:

t ypedef struct tPS3000APwgConditi ons

PS3000A_TRI GGER_STATE channel A,
PS3000A TRI GGER_STATE channel B;
PS3000A_TRI GGER_STATE channel C,
PS3000A TRI GGER_STATE channel D;
PS3000A _TRI GGER_STATE ext ernal ;
PS3000A TRI GGER_STATE aux;

} PS3000A PWQ CONDI TlI ONS

Each structure is the logical AND of the states of the scope's inputs. The
ps3000aSetPulseWidthQualifier() function can OR together a number of these

structures to produce the final pulse width qualifier, which can therefore be any
possible Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Applicability All models*

Elements

channel A, channel B, channel C-*, channel D**, external,
the type of condition that should be applied to each channel. Use
these constants: -

PS3000A CONDI TI ON_DONT_CARE

PS3000A CONDI TI ON_TRUE

PS3000A CONDI TI ON_FALSE

The channels that are set to PS3000A_CONDI TI ON_TRUE or
PS3000A CONDI Tl ON_FALSE must all meet their conditions

simultaneously to produce a trigger. Channels set to
PS3000A CONDI TI ON_DONT_CARE are ignored.

aux, not used

*Note: using this function the driver will convert the PS3000A PW)Q CONDI TI ONS into
a PS3000A_PWQ CONDI TI ONS_V2 and will set the condition for digital to
PS3000A DI G TAL_DONT_CARE.

**Note: applicable to 4-channel oscilloscopes only.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

80 API functions

4.53 ps3000aSetPulseWidthQualifierV2
Pl CO _STATUS ps3000aSet Pul seW dt hQual i fi erVv2

(
intl6 t handl e,
PS3000A PWQ CONDI TIONS V2 * conditions,
intl6 t nCondi ti ons,
PS3000A THRESHOLD DI RECTION direction,
uint32_t | ower,
ui nt 32_t upper,
PS3000A PULSE W DTH_TYPE type

)

This function sets up pulse-width qualification, which can be used on its own for pulse-
width triggering or combined with level triggering or window triggering to produce
more complex triggers. The pulse-width qualifier is set by defining one or more
structures that are then ORed together. Each structure is itself the AND of the states of
one or more of the inputs. This AND-OR logic allows you to create any possible
Boolean function of the scope's inputs.

Applicability |All modes
Arguments
handl e, the handle of the required device

* conditions, an array of PS3000A PWQ CONDI TI ONS_V2 structures specifying
the conditions that should be applied to each channel. In the simplest case, the array
consists of a single element. When there are several elements, the overall trigger
condition is the logical OR of all the elements. If condi ti ons is NULL then the
pulse-width qualifier is not used.

nCondi ti ons, the number of elements in the condi ti ons array. If nCondi ti ons
is zero then the pulse-width qualifier is not used.
Range: 0 to PS3000A MAX PULSE W DTH QUALI FI ER_ COUNT.

di rection, the direction of the signal required for the pulse width trigger to fire.
See PS3000A THRESHOLD DI RECTI ON const ant s for the list of possible values.
Each channel of the oscilloscope (except the EXT input) has two thresholds for each
direction—for example, PS3000A RI SI NGand PS3000A RI SI NG LOAER—so that
one can be used for the pulse-width qualifier and the other for the level trigger. The
driver will not let you use the same threshold for both triggers; so, for example, you
cannot use PS3000A RI SI NG as the di r ecti on argument for both
ps3000aSetTriggerConditionsV2() and ps3000aSetPulseWidthQualifierV2() at the
same time. There is no such restriction when using window triggers.

| ower, the lower limit of the pulse-width counter, measured in samples.

upper, the upper limit of the pulse-width counter, measured in samples. This
parameter is used only when the type is set to PS3000A PW TYPE | N RANGE or
PS3000A PW TYPE OUT_OF RANCE.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 81

Arguments type, the pulse-width type, one of these constants:
PS3000A PW TYPE_NONE: do not use the pulse width qualifier
PS3000A PW TYPE_LESS THAN: pulse width less than | ower
PS3000A PW TYPE_GREATER THAN. pulse width greater than
| ower
PS3000A PW TYPE_| N RANGE: pulse width between | ower and
upper
PS3000A PW TYPE_QUT_OF RANGCE: pulse width not between
| ower and upper

Returns Pl CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO_USER_CALLBACK

Pl CO_CONDI Tl ONS

Pl CO_PULSE W DTH_QUALI FI ER
Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

82

API functions

4.53.1 PS3000A_PWQ_CONDITIONS_V2 structure

A structure of this type is passed to ps3000aSetPulseWidthQualifierV2() in the
condi ti ons argument to specify the trigger conditions. It is defined as follows:

typedef struct tPS3000APwgConditi onsV2

PS3000A_TRI GGER_STATE channel A,
PS3000A TRI GGER_STATE channel B;
PS3000A_TRI GGER_STATE channel C,
PS3000A TRI GGER_STATE channel D;
PS3000A _TRI GGER_STATE ext ernal ;
PS3000A TRI GGER_STATE aux;
PS3000A TRI GGER_STATE digital;
} PS3000A PWQ CONDI TI ONS_V2

Each structure is the logical AND of the states of the scope's inputs. The
ps3000aSetPulseWidthQualifierV2() function can OR together a number of these

structures to produce the final pulse width qualifier, which can therefore be any
possible Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Applicability |All models

Elements

channel A, channel B, channel C*, channel D*, external,
the type of condition that should be applied to each channel. Use
these constants: -

PS3000A CONDI TI ON_DONT_CARE

PS3000A CONDI TI ON_TRUE

PS3000A CONDI TI ON_FALSE

The channels that are set to PS3000A CONDI TI ON_ TRUE or
PS3000A CONDI Tl ON_FALSE must all meet their conditions

simultaneously to produce a trigger. Channels set to
PS3000A CONDI TI ON_DONT_CARE are ignored.

aux, not used

*Note: applicable to 4-channel analog devices only.

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 83

4.54 ps3000aSetSigGenArbitrary
Pl CO_STATUS ps3000aSet Si gGenArbitrary

(
int16_t handl e,
int32 t of f set Vol t age,
ui nt 32_t pkToPk,
uint32_t st art Del t aPhase,
ui nt 32_t st opDel t aPhase,
uint32 t del t aPhasel ncr enent ,
ui nt 32_t dwel | Count,
intl1l6 t * arbitraryWaveform
int32_t ar bi traryWavef ornti ze,
PS3000A SWEEP_TYPE sweepType,
PS3000A EXTRA OPERATI ONS operation,
PS3000A | NDEX_MODE i ndexMode,
ui nt 32_t shot s,
uint32_t sweeps,
PS3000A_SI GGEN_TRI G_TYPE trigger Type,
PS3000A SI GGEN_TRI G_SOURCE tri gger Sour ce,
int1l6_t ext | nThreshol d

)

This function programs the signal generator to produce an arbitrary waveform.

The arbitrary waveform generator uses direct digital synthesis (DDS). It maintains a
32-bit phase accumulator that indicates the present location in the waveform. The top
bits of the phase accumulator are used as an index into a buffer containing the
arbitrary waveform. The remaining bits act as the fractional part of the index, enabling
high-resolution control of output frequency and allowing the generation of lower
frequencies.

The generator steps through the waveform by adding a deltaPhase value between 1
and phaseAccumulatorSize-1 to the phase accumulator every dacPeriod (1/
dacFrequency). If deltaPhase is constant, the generator produces a waveform at a
constant frequency that can be calculated as follows:

deltaPhase awgBufferSize
outputFrequency = dacFrequency x (phaseAccumuIatorSize) X (arbitrar?WaveformSize)
where:

outputFrequency = repetition rate of the complete arbitrary waveform

dacFrequency = update rate of AWG DAC (see table below)

deltaPhase = calculated from st art Del t aPhase and
del t aPhasel ncrenment (use
ps3000aSigGenFrequencyToPhase() to do the
calculation for you)

phaseAccumulatorSize = maximum count of phase accumulator (see table
below)

awgBufferSize maximum AWG buffer size (see table below)

arbitraryWaveformSize length in samples of the user-defined waveform

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

84

API functions

PicoScope PicoScope PicoScope PicoScope
32048B 3206B All 3000D 3207B
3204 MSO 3206 MSO All 3000D
3205B 3406B MSO
3205 MSO
34048B
Parameter 3405B
dacFrequency 20 MHz 100 MHz
dacPeriod (= 1/dacFrequency) 50 ns 10 ns
phaseAccumulatorSize 4,294,967,296 (232)
awgBufferSize 8192 (213) 16,384 (21%) 32,768 (219)

It is also possible to sweep the frequency by continually modifying the deltaPhase.
This is done by setting up a deltaPhaselncrement that the oscilloscope adds to the
deltaPhase at specified intervals.

Note 1: in general, this function can be called with new arguments while waiting for a
trigger; the exceptions are the arguments of f set Vol t age, pkToPk,

arbi traryWaveform arbitraryWavef orntSi ze and oper ati on, which must
unchanged on subsequent calls, otherwise the function will return a PI CO_BUSY
status code.

Applicability |All modes. All models with AWG.

Arguments
handl e, the handle of the required device.

of f set Vol t age, the voltage offset, in microvolts, to be applied to the waveform.

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal.

Note that if the signal voltages described by the combination of of f set Vol t age and
pkToPk extend outside the voltage range of the signal generator, the output
waveform will be clipped.

st art Del t aPhase, the initial value added to the phase accumulator as the
generator begins to step through the waveform buffer. Calculate this value from the
information above, or use ps3000aSigGenFrequencyToPhase().

st opDel t aPhase, the final value added to the phase accumulator before the
generator restarts or reverses the sweep. When frequency sweeping is not required,
set equal to st art Del t aPhase.

del t aPhasel ncrenent, the amount added to the delta phase value every time the
dwel | Count period expires. This determines the amount by which the generator
sweeps the output frequency in each dwell period. When frequency sweeping is not
required, set to zero.

dwel | Count, the time, in units of dacPeriod, between successive additions of
del t aPhasel ncrenment to the delta phase accumulator. This determines the rate at
which the generator sweeps the output frequency.

Minimum value: PS3000A_ M N _DWELL _COUNT

* arbitraryWavef or m a buffer that holds the waveform pattern as a set of
samples equally spaced in time. If pkToPk is set to its maximum (4 V) and
of f set Vol t age is set to 0 V:

a sample of m nAr bi t r ar yWavef or nval ue corresponds to -2 V

a sample of maxAr bi t r ar yWavef or nval ue corresponds to +2 V

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 85

where m nAr bi t rar yWavef or nval ue and maxAr bi t rar yWavef or mval ue are the
values returned by ps3000aSigGenArbitraryMinMaxValues().

ar bi traryWavef or nSi ze, the size of the arbitrary waveform buffer, in samples, in
the range:

[m nArbi traryWavef or nSi ze, maxArbi traryWavef or nSi ze]
where m nAr bi t raryWavef or nSi ze and naxAr bi trar yWavef or nSi ze are the
values returned by ps3000aSigGenArbitraryMinMaxValues().

sweepType, determines whether the st art Del t aPhase is swept up to the
st opDel t aPhase, or down to it, or repeatedly swept up and down. Use one of
these enumerated types: -

PS3000A UP

PS3000A DOWN

PS3000A UPDOWN

PS3000A DOMNUP

operati on, the type of waveform to be produced, specified by one of the following
enumerated types:
PS3000A _ES OFF, normal signal generator operation specified by wavetype.
PS3000A WHI TENO SE, the signal generator produces white noise and ignores all
settings except pkToPk and of f set Vol t age.
PS3000A PRBS, produces a pseudorandom random binary sequence with a bit rate
specified by the start and stop frequency.

i ndexMode, specifies how the signal will be formed from the arbitrary waveform
data. Single and dual index modes are possible. Use one of these constants:
PS3000A _SI NGLE
PS3000A DUAL

shots, see ps3000aSigGenBuiltIn()

sweeps, see ps3000aSigGenBuiltIn()

trigger Type, see ps3000aSigGenBuiltIn()
trigger Source, see ps3000aSigGenBuiltin()
ext | nThreshol d, see ps3000aSigGenBuiltIn()

Returns Pl CO_OK
Pl CO_ AWG NOT_SUPPORTED
Pl CO_POWER_SUPPLY_CONNECTED
Pl CO_ PONER_SUPPLY NOT CONNECTED
Pl CO_BUSY
Pl CO_| NVALI D HANDLE
Pl CO_SI G GEN_PARAM
Pl CO_SHOTS SWEEPS WARNI NG
Pl CO_NOT_RESPONDI NG
Pl CO WARNI NG _EXT_THRESHOLD CONFLI CT
Pl CO_NO_SI GNAL_GENERATOR
Pl CO_SI GGEN_OFFSET_VOLTAGE
Pl CO_SI GGEN_PK_TO PK
Pl CO_SI GGEN_OUTPUT _OVER VOLTAGE
Pl CO_DRI VER_FUNCTI ON
Pl CO_SI GGEN_WAVEFORM SETUP_FAI LED

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

86 API functions

4.54.1 AWG index modes

The arbitrary waveform generator supports single and dual index modes to help you
make the best use of the waveform buffer.

Single mode. The generator outputs the raw
contents of the buffer repeatedly. This mode is
the only one that can generate asymmetrical
waveforms. You can also use this mode for
symmetrical waveforms, but the dual mode
makes more efficient use of the buffer
memory.

<— Buffer —>

Dual mode. The generator outputs the
contents of the buffer from beginning to end,
and then does a second pass in the reverse
direction through the buffer. This allows you
to specify only the first half of a waveform
with twofold symmetry, such as a Gaussian
function, and let the generator fill in the other
half.

<— Buffer —>

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

87

4.55 ps3000aSetSigGenBuiltin

Pl CO_STATUS ps3000aSet Si gGenBuiltln

C
intl1l6 t
int32 t
uint32_t
PS3000A WAVE TYPE
fl oat
fl oat
fl oat
fl oat
PS3000A SWEEP_TYPE
PS3000A EXTRA OPERATI ONS
uint32_t
uint32_t
PS3000A SI GGEN_TRI G_TYPE

PS3000A_SI GGEN_TRI G_SOURCE

intl6 t
)

handl e,

of f set Vol t age,
pkToPk,
waveType,

start Frequency,
st opFr equency,
i ncrenment,
dwel | Ti ne,
sweepType,
operation,

shot s,

sweeps,
triggerType,
trigger Source,
ext I nThreshol d

This function sets up the signal generator to produce a signal from a list of built-in
waveforms. If different start and stop frequencies are specified, the device will sweep

either up, down or up and down.

Applicability |All models
Arguments
handl e, the handle of the required device

of f set Vol t age,

pkToPk,

the voltage offset, in microvolts, to be applied to the waveform

the peak-to-peak voltage, in microvolts, of the waveform signal. Note that

if the signal voltages described by the combination of of f set Vol t age and pkToPk
extend outside the voltage range of the signal generator, the output waveform will be

clipped.
waveType, the type of waveform to be generated.
PS3000A_SI NE sine wave

PS3000A_SQUARE
PS3000A_TRI ANGLE
PS3000A_DC_VOLTAGE

square wave
triangle wave
DC voltage

The following waveTypes apply to B and MSO models only.

PS3000A_RAMP_UP
PS3000A_RAMP_DOMN
PS3000A_SI NC
PS3000A_GAUSSI AN
PS3000A_HALF_SI NE

start Frequency,

rising sawtooth

falling sawtooth

sin (x)/x

Gaussian

half (full-wave rectified) sine

the frequency that the signal generator will initially produce. For

allowable values see PS3000A SI NE_MAX FREQUENCY and related values.

st opFr equency,
the initial frequency

i ncrenent,

the frequency at which the sweep reverses direction or returns to

the amount of frequency increase or decrease in sweep mode

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

ps3000apg.en r13

88

API functions

Arguments

dwel | Ti ne, the time for which the sweep stays at each frequency,
in seconds

sweepType, whether the frequency will sweep from
start Frequency to st opFrequency, orin the opposite direction,

or repeatedly reverse direction. Use one of these constants:
PS3000A UP
PS3000A DOVWN
PS3000A UPDOMW
PS3000A DONNUP

operati on, the type of waveform to be produced, specified by one
of the following enumerated types (MSO and B models only):
PS3000A _ES OFF, normal signal generator operation specified by
wavetype.
PS3000A WHI TENO SE, the signal generator produces white
noise and ignores all settings except pkToPk and
of f set Vol t age.
PS3000A PRBS, produces a pseudorandom binary sequence with
bit rate specified by the start and stop frequencies.

shot s,
0: sweep the frequency as specified by sweeps
1...PS3000A MAX SWEEPS SHOTS: the number of cycles of the
waveform to be produced after a trigger event. sweeps must be
zero.
PS3000A SHOT SWEEP TRI GGER CONTI NUOUS RUN: start and
run continuously after trigger occurs

sweeps,
0: produce number of cycles specified by shot s
1. . PS3000A MAX SWEEPS SHOTS: the number of times to
sweep the frequency after a trigger event, according to
sweepType. shots must be zero.
PS3000A SHOT SWEEP TRI GGER CONTI NUOUS RUN: start a
sweep and continue after trigger occurs

trigger Type, the type of trigger that will be applied to the signal
generator:

PS3000A_SI GGEN_RI SI NG trigger on rising edge
PS3000A SI GGEN_FALLI NG trigger on falling edge
PS3000A SI GGEN _GATE HI CGH run while trigger is high
PS3000A SI GGEN_GATE LOW run while trigger is low

trigger Sour ce, the source that will trigger the signal generator:

PS3000A_SI GGEN_NONE run without waiting for
trigger

PS3000A SI GGEN_SCOPE_TRI G use scope trigger

PS3000A SI GGEN _EXT IN use EXT input

PS3000A SI GGEN_SOFT_TRI G wait for software trigger
provided by
ps3000aSigGenSoftware

Control()
PS3000A SI GGEN_TRI GGER_RAW reserved

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

89

Arguments

Returns

If a trigger source other than P3000A SI GGEN_NONE is specified,

then either shot s or sweeps, but not both, must be non-zero.

ext I nThreshol d, used to set trigger level for external trigger.

Pl CO_OK

Pl CO_BUSY

Pl CO_POAER_SUPPLY_CONNECTED

Pl CO_POAER_SUPPLY_NOT_CONNECTED

Pl CO_| NVALI D_HANDLE

Pl CO_SI G_GEN_PARAM

Pl CO_SHOTS_SWEEPS_WARNI NG

Pl CO_NOT_RESPONDI NG

Pl CO_WARNI NG_AUX_OUTPUT_CONFLI CT
Pl CO_WARNI NG_EXT_THRESHOLD_CONFLI CT
Pl CO_NO_SI GNAL_GENERATOR

Pl CO_SI GGEN_OFFSET_VOLTAGE

Pl CO_SI GGEN_PK_TO PK

Pl CO_SI GGEN_OUTPUT_OVER VOLTAGE

Pl CO_DRI VER_FUNCTI ON

Pl CO_SI GGEN_WAVEFORM SETUP_FAI LED
Pl CO_NOT_RESPONDI NG

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

ps3000apg.en r13

API functions

ps3000aSetSigGenBuiltinV2

Pl CO_STATUS ps3000aSet Si gGenBui | t I nV2

C
intl1l6 t
int32 t
uint32_t
PS3000A WAVE TYPE
doubl e
doubl e
doubl e
doubl e
PS3000A SWEEP_TYPE
PS3000A EXTRA OPERATI ONS
uint32_t
uint32_t
PS3000A SI GGEN_TRI G_TYPE
PS3000A SI GGEN_TRI G_SOURCE
intl6 t

)

handl e,

of f set Vol t age,
pkToPk,
waveType,

start Frequency,
st opFr equency,
i ncrenment,
dwel | Ti ne,
sweepType,
operation,

shot s,

sweeps,
triggerType,
trigger Source,
ext I nThreshol d

This function is an upgraded version of ps3000aSetSigGenBuiltIn() with double-

precision frequency arguments for more precise control at low frequencies.

Applicability |All models
Arguments

See ps3000aSetSigGenBuiltIn()

Returns

See ps3000aSetSigGenBuiltIn()

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 91

4.57 ps3000aSetSigGenPropertiesArbitrary
Pl CO STATUS ps3000aSet Si gGenPropertiesArbitrary

(
intl6_ t handl e,
ui nt 32_t start Del t aPhase,
uint32_t st opDel t aPhase,
ui nt 32_t del t aPhasel ncr enent ,
uint32_t dwel | Count
PS3000A_SWEEP_TYPE sweepType,
uint32_t shot s,
ui nt 32_t sweeps,
PS3000A SI GGEN _TRI G_TYPE trigger Type,
PS3000A_SI GGEN_TRI G_SOURCE trigger Sour ce,
intl6_ t ext I nThreshol d

)

This function reprograms the arbitrary waveform generator. All values can be
reprogrammed while the signal generator is waiting for a trigger.

Applicability |All modes
Arguments See ps3000aSetSigGenArbitrary()

Returns 0: if successful.
Error code: if failed

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

92 API functions

4.58 ps3000aSetSigGenPropertiesBuiltln
Pl CO _STATUS ps3000aSet Si gGenPropertiesBuiltln

(

intl6 t handl e,

doubl e st art Frequency,
doubl e st opFr equency,
doubl e i ncrenent,
doubl e dwel | Ti e,
PS3000A _SWEEP_TYPE sweepType,
uint32_t shot s,

uint32_t sweeps,

PS3000A SI GGEN_TRI G_TYPE trigger Type,
PS3000A_SI GGEN_TRI G_SOURCE tri gger Source,
intl6 t ext I nThreshol d

)

This function reprograms the signal generator. Values can be changed while the signal
generator is waiting for a trigger.

Applicability |All modes
Arguments See ps3000aSetSigGenBuiltIn()

Returns 0: if successful.
Error code: if failed

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 93

4.59 ps3000aSetSimpleTrigger
Pl CO_STATUS ps3000aSet Si npl eTri gger

(
int16_t handl e,
intl6 t enabl e,
PS3000A CHANNEL sour ce,
intl1l6 t t hreshol d,
PS3000A THRESHOLD DI RECTI ON direction,
ui nt 32_t del ay,
intl6_ t aut oTri gger _ns
)

This function simplifies arming the trigger. It supports only the LEVEL trigger types
and does not allow more than one channel to have a trigger applied to it. Any previous
pulse width qualifier is cancelled.

Applicability |All modes
Arguments handl e, the handle of the required device.

enabl e, zero to disable the trigger, any non-zero value to set the
trigger.

sour ce, the channel on which to trigger.
t hreshol d, the ADC count at which the trigger will fire.

di rection, the direction in which the signal must move to cause a
trigger. The following directions are supported: ABOVE, BELOW
RI SI NG, FALLI NGand RI SI NG_ OR_FALLI NG.

del ay, the time between the trigger occurring and the first sample.
For example, if del ay = 100, the scope would wait 100 sample
periods before sampling. At a timebase of 500 MS/s, or 2 ns per
sample, the total delay would then be 100 x 2 ns = 200 ns. Range: 0
to MAX_ DELAY_ COUNT.

aut oTri gger _ns, the number of milliseconds the device will wait if
no trigger occurs. If this is set to zero, the scope device will wait
indefinitely for a trigger.
Returns PI CO_OK
Pl CO | NVALI D_CHANNEL
Pl CO | NVALI D_PARAMETER
Pl CO_MEMORY
Pl CO_CONDI TI ONS
Pl CO | NVALI D_HANDLE
Pl CO USER CALLBACK
Pl CO DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

94 API functions

4.60 ps3000aSetTriggerChannelConditions
Pl CO_STATUS ps3000aSet Tri gger Channel Condi ti ons

intl6 t handl e,
PS3000A TRI GGER _CONDI TI ONS * condi ti ons,
intl6 t nCondi ti ons

)

This function sets up trigger conditions on the scope's inputs. The trigger is defined by
one or more PS3000A TRI GGER_CONDI Tl ONS structures that are then ORed together.
Each structure is itself the AND of the states of one or more of the inputs. This AND-
OR logic allows you to create any possible Boolean function of the scope's inputs.

If complex triggering is not required, use ps3000aSetSimpleTrigger().

Applicability |All modes
Arguments handl e, the handle of the required device.

* conditions, an array of PS3000A TRI GGER _CONDI Tl ONS
structures* specifying the conditions that should be applied to each
channel. In the simplest case, the array consists of a single element.
When there is more than one element, the overall trigger condition is
the logical OR of all the elements.

nCondi ti ons, the number of elements in the condi ti ons array.
If nCondi ti ons is zero then triggering is switched off.
Returns PI CO_ XK
Pl CO_| NVALI D_HANDLE
Pl CO_USER_CALLBACK
Pl CO_CONDI TI ONS
Pl CO_MEMORY
Pl CO_DRI VER_FUNCTI ON

*Note: using this function the driver will convert the PS3000A TRI GGER_CONDI Tl ONS
into a PS3000A _TRI GGER_CONDI TI ONS_V2 and will set the condition for digital to
PS3000A DI G TAL_DONT_CARE.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 95

4.60.1 PS3000A_TRIGGER_CONDITIONS structure

A structure of this type is passed to ps3000aSetTriggerChannelConditions() in the
condi ti ons argument to specify the trigger conditions, and is defined as follows: -

typedef struct tPS3000ATri gger Conditions

PS3000A_TRI GGER_STATE channel A,

PS3000A TRI GGER_STATE channel B;

PS3000A_TRI GGER_STATE channel C,

PS3000A TRI GGER_STATE channel D;

PS3000A _TRI GGER_STATE ext ernal ;

PS3000A TRI GGER_STATE aux;

PS3000A TRI GGER_STATE pul seW dt hQual i fi er;
} PS3000A TRI GGER_CONDI TI ONS

Each structure is the logical AND of the states of the scope's inputs. The
ps3000aSetTriggerChannelConditions() function can OR together a number of these

structures to produce the final trigger condition, which can be any possible Boolean
function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Elements

channel A, channel B, channel C, channel D, external,
pul seW dt hQual i fier, the type of condition that should be

applied to each channel. Use these constants:
PS3000A CONDI TI ON_DONT_CARE
PS3000A _CONDI TI ON_TRUE
PS3000A CONDI TI ON_FALSE

The channels that are set to PS3000A_CONDI TI ON_TRUE or
PS3000A CONDI Tl ON_FALSE must all meet their conditions

simultaneously to produce a trigger. Channels set to
PS3000A CONDI TI ON_DONT_CARE are ignored.

aux, not used

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

96 API functions

4.61 ps3000aSetTriggerChannelConditionsV2
Pl CO_STATUS ps3000aSet Tri gger Channel Condi ti onsV2

int16_t handl e,
PS3000A TRI GGER_CONDI TIONS_V2 * condi ti ons,
int16_t nCondi ti ons

)

This function sets up trigger conditions on the scope's inputs. The trigger is defined by
one or more PS3000A TRI GGER_CONDI Tl ONS_V2 structures that are then ORed
together. Each structure is itself the AND of the states of one or more of the inputs.

This AND-OR logic allows you to create any possible Boolean function of the scope's
inputs.

If complex triggering is not required, use ps3000aSetSimpleTrigger().

Applicability |All modes
Arguments handl e, the handle of the required device.

* conditions, an array of PS3000A TRI GGER CONDI TI ONS V2
structures specifying the conditions that should be applied to each
channel. In the simplest case, the array consists of a single element.
When there is more than one element, the overall trigger condition is
the logical OR of all the elements.

nCondi ti ons, the number of elements in the condi ti ons array.
If nCondi ti ons is zero then triggering is switched off.
Returns PI CO_OK
Pl CO_| NVALI D_HANDLE
Pl CO_USER CALLBACK
Pl CO_CONDI TI ONS
PI CO_MEMORY
Pl CO_DRI VER_FUNCTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 97

4.61.1 PS3000A_TRIGGER_CONDITIONS_V2 structure

A structure of this type is passed to ps3000aSetTriggerChannelConditionsV2() in the
condi ti ons argument to specify the trigger conditions, and is defined as follows: -

typedef struct tPS3000ATri gger ConditionsV2

PS3000A_TRI GGER_STATE channel A,
PS3000A TRI GGER_STATE channel B;
PS3000A_TRI GGER_STATE channel C,
PS3000A TRI GGER_STATE channel D;
PS3000A _TRI GGER_STATE ext ernal ;
PS3000A TRI GGER_STATE aux;
PS3000A TRI GGER_STATE pul seW dt hQual i fi er;
PS3000A TRI GGER_STATE digital;

} PS3000A TRI GGER_CONDI TI ONS_V2;

Each structure is the logical AND of the states of the scope's inputs.
ps3000aSetTriggerChannelConditionsV2() can OR together a number of these

structures to produce the final trigger condition, which can be any possible Boolean
function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Elements

channel A, channel B, channel C, channel D, external,
pul seW dt hQualifier, the type of condition that should be

applied to each channel. Use these constants:
PS3000A CONDI TI ON_DONT_CARE
PS3000A CONDI TI ON_TRUE
PS3000A CONDI TI ON_FALSE

The channels that are set to PS3000A CONDI TI ON_ TRUE or
PS3000A CONDI Tl ON_FALSE must all meet their conditions

simultaneously to produce a trigger. Channels set to
PS3000A CONDI TI ON_DONT_CARE are ignored.

aux, not used

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

98

API functions

4.62 ps3000aSetTriggerChannelDirections
Pl CO_STATUS ps3000aSet Tri gger Channel Di recti ons

«
intl1l6 t

handl e,

PS3000A_THRESHOLD_ DI RECTI ON channel A,
PS3000A_THRESHOLD_ DI RECTI ON channel B,
PS3000A_THRESHOLD_ DI RECTI ON channel C,
PS3000A_THRESHOLD_ DI RECTI ON channel D,
PS3000A _THRESHOLD DI RECTI ON ext,
PS3000A_THRESHOLD_DI RECTI ON aux

)

This function sets the direction of the trigger for each channel.

Applicability
Arguments

Returns

All modes
handl e, the handle of the required device

channel A, channel B, channel C, channel D, ext, the
direction in which the signal must pass through the threshold to
activate the trigger. See the table below for allowable values. If using
a level trigger in conjunction with a pulse-width trigger, see the
description of the di rect i on argument to
ps3000aSetPulseWidthQualifierV2() for more information.

aux, not used

Pl CO &K

Pl CO | NVALI D HANDLE

Pl CO_USER CALLBACK

Pl CO | NVALI D_PARAMETER

PS3000A THRESHOLD_ DI RECTI ON constants

PS3000A ABOVE for gated triggers: above the upper threshold

PS3000A_ABOVE_LOWER for gated triggers: above the lower threshold

PS3000A BELOW for gated triggers: below the upper threshold

PS3000A BELOW LOVER for gated triggers: below the lower threshold

PS3000A RI SI NG for threshold triggers: rising edge, using upper
threshold

PS3000A_RI SI NG_LOAER for threshold triggers: rising edge, using lower
threshold

PS3000A FALLI NG for threshold triggers: falling edge, using upper
threshold

PS3000A FALLI NG_LOVER for threshold triggers: falling edge, using lower
threshold

PS3000A_RI SI NG_OR_FALLI NG for threshold triggers: either edge

PS3000A | NSI DE for window-qualified triggers: inside window

PS3000A QUTSI DE for window-qualified triggers: outside window

PS3000A_ENTER for window triggers: entering the window

PS3000A EXIT for window triggers: leaving the window

PS3000A ENTER OR EXI T for window triggers: either entering or leaving
the window

PS3000A_PCSI Tl VE_RUNT for window-qualified triggers

PS3000A NEGATI VE_RUNT for window-qualified triggers

PS3000A _NONE no trigger

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 99

4.63 ps3000aSetTriggerChannelProperties
Pl CO_STATUS ps3000aSet Tri gger Channel Properties

handl e,

PS3000A_TRI GGER_CHANNEL_PROPERTI ES * channel Properti es,

nChannel Properti es,
auxCQut put Enabl e,
autoTriggerM 1 Iiseconds

This function is used to enable or disable triggering and set its parameters.

«
intl1l6 t
intl6 t
intl1l6 t
int32_t

)

Applicability
Arguments
Returns

All modes
handl e, the handle of the required device.

* channel Properties, a pointerto an array of

TRI GGER_CHANNEL _PROPERTI ES structures describing the requested
properties. The array can contain a single element describing the
properties of one channel, or a number of elements describing several
channels. If NULL is passed, triggering is switched off.

nChannel Properties, the size of the channel Properties
array. If zero, triggering is switched off.

auxCQut put Enabl e, not used

autoTriggerM || iseconds, thetime in milliseconds for which the
scope device will wait before collecting data if no trigger event occurs.
If this is set to zero, the scope device will wait indefinitely for a
trigger.

Pl CO &K

Pl CO_| NVALI D_HANDLE

Pl CO_USER_CALLBACK

Pl CO_TRI GGER_ERRCR

Pl CO_MEMORY

Pl CO_| NVALI D_TRI GGER_PROPERTY

Pl CO_DRI VER_FUNCTI ON

Pl CO_| NVALI D_PARAMETER

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

100

API functions

4.63.1 PS3000A_TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps3000aSetTriggerChannelProperties() in the
channel Properti es argument to specify the trigger mechanism, and is defined as

follows: -

typedef st

intl1l6 t
uint16 t
intl1l6 t
uint16_t

PS3000A
PS3000A _

ruct tPS3000ATri gger Channel Properties

t hr eshol dUpper ;
t hr eshol dUpper Hyst eresi s;
t hr eshol dLower ;
t hr eshol dLower Hyst er esi s;
CHANNEL channel ;
THRESHOLD MODE t hr eshol dvbde;

} PS3000A_TRI GGER_CHANNEL_PROPERTI ES

The structure is

byte-aligned. In C++, for example, you should specify this using the

#pragma pack() instruction.

Elements

t hr eshol dUpper, the upper threshold at which the trigger must
fire. This is scaled in 16-bit ADC counts at the currently selected range
for that channel.

t hr eshol dUpper Hyst er esi s, the hysteresis by which the trigger

must exceed the upper threshold before it will fire. It is scaled in 16-
bit counts.

t hr eshol dLower, the lower threshold at which the trigger must

fire. This is scaled in 16-bit ADC counts at the currently selected range
for that channel.

t hr eshol dLower Hyst er esi s, the hysteresis by which the trigger
must exceed the lower threshold before it will fire. It is scaled in 16-
bit counts.

channel , the channel to which the properties apply. This can be one
of the four input channels listed under ps3000aSetChannel(), or
PS3000A_ TRIGGER_AUX for the AUX input.

t hr eshol dMode, either a level or window trigger. Use one of these
constants: -

PS3000A LEVEL

PS3000A W NDOW

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 101

4.64 ps3000aSetTriggerDelay
Pl CO_STATUS ps3000aSet Tri gger Del ay

intl6_t handl e,
uint32_t del ay

)

This function sets the post-trigger delay, which causes capture to start a defined time
after the trigger event.

Applicability All modes

Arguments handl e, the handle of the required device

del ay, the time between the trigger occurring and the first sample.
For example, if del ay=100 then the scope would wait 100 sample
periods before sampling. At a timebase of 500 MS/s, or 2 ns per
sample, the total delay would then be 100 x 2 ns = 200 ns.
Range: 0 to MAX_DELAY_COUNT

Returns PI CO_OK
Pl CO_| NVALI D_HANDLE
Pl CO USER CALLBACK
Pl CO DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

102 API functions

4.65 ps3000aSetTriggerDigitalPortProperties
Pl CO STATUS ps3000aSet Tri gger Di gi tal Port Properties

intl6 t handl e,
PS3000A DI G TAL_CHANNEL DI RECTI ONS * directions
intl6 t nDi recti ons

)

This function will set the individual digital channels' trigger directions. Each trigger
direction consists of a channel name and a direction. If the channel is not included in
the array of PS3000A DI G TAL_CHANNEL_ DI RECTI ONS the driver assumes the
digital channel's trigger direction is PS3000A DI G TAL_DONT _CARE.

Applicability |All modes
Arguments handl e, the handle of the required device.

* directions, a pointerto an array of

PS3000A DI G TAL_CHANNEL_DI RECTI ONS structures describing the
requested properties. The array can contain a single element
describing the properties of one channel, or a number of elements
describing several digital channels. If di recti ons is NULL, digital
triggering is switched off. A digital channel that is not included in the
array will be set to PS3000A DI G TAL_DONT_CARE.

nDi recti ons, the number of digital channel directions being
passed to the driver.
Returns PI CO_ XK
Pl CO_| NVALI D_HANDLE
Pl CO_DRI VER_FUNCTI ON
Pl CO_| NVALI D_DI G TAL_CHANNEL
Pl CO_| NVALI D_DI G TAL_TRI GGER_DI RECTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 103

4.65.1 PS3000A_DIGITAL_CHANNEL_DIRECTIONS structure

A structure of this type is passed to ps3000aSetTriggerDigitalPortProperties() in the
di recti ons argument to specify the trigger mechanism, and is defined as follows: -

pragma pack(1)
typedef struct tPS3000ADi gital Channel Directions

PS3000A DI G TAL_CHANNEL channel ;

PS3000A DI G TAL_DI RECTI ON di recti on;
} PS3000A DI G TAL_CHANNEL_DI RECTI ONS;
#pragma pack()

typedef enum enPS3000ADi gi t al Channel

PS3000A DI G TAL_CHANNEL_O,
PS3000A DI G TAL_CHANNEL _1,
PS3000A DI G TAL_CHANNEL_2,
PS3000A DI G TAL_CHANNEL _3,
PS3000A DI G TAL_CHANNEL _4,
PS3000A DI G TAL_CHANNEL _5,
PS3000A DI G TAL_CHANNEL _6,
PS3000A DI G TAL_CHANNEL_7,
PS3000A DI G TAL_CHANNEL_8,
PS3000A DI G TAL_CHANNEL_9,
PS3000A DI G TAL_CHANNEL_10,
PS3000A DI G TAL_CHANNEL_11,
PS3000A DI G TAL_CHANNEL_12,
PS3000A DI G TAL_CHANNEL_13,
PS3000A DI G TAL_CHANNEL_14,
PS3000A DI G TAL_CHANNEL_15,
PS3000A DI G TAL_CHANNEL_16,
PS3000A DI G TAL_CHANNEL_17,
PS3000A DI G TAL_CHANNEL_18,
PS3000A DI G TAL_CHANNEL_19,
PS3000A DI G TAL_CHANNEL_ 20,
PS3000A DI G TAL_CHANNEL_21,
PS3000A DI G TAL_CHANNEL_22,
PS3000A DI G TAL_CHANNEL_23,
PS3000A DI G TAL_CHANNEL_ 24,
PS3000A DI G TAL_CHANNEL_ 25,
PS3000A DI G TAL_CHANNEL_26,
PS3000A DI G TAL_CHANNEL_27,
PS3000A DI G TAL_CHANNEL_28,
PS3000A DI G TAL_CHANNEL_29,
PS3000A DI G TAL_CHANNEL_30,
PS3000A DI G TAL_CHANNEL_31,
PS3000A NMAX_DI G TAL_CHANNELS
} PS3000A_DI G TAL_CHANNEL;

typedef enum enPS3000ADi gital Direction
{

PS3000A DI Gl TAL_DONT_CARE,
PS3000A_DI Gl TAL_DI RECTI ON_LOW
PS3000A DI Gl TAL_DI RECTI ON_HI GH,
PS3000A_DI Gl TAL_DI RECTI ON_RI SI NG
PS3000A_DI Gl TAL_DI RECTI ON_FALLI NG
PS3000A DI Gl TAL_DI RECTI ON_RI SI NG_OR_FALLI NG,
PS3000A_DI Gl TAL_MAX_DI RECTI ON
} PS3000A DI G TAL_DI RECTI ON;

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

104 API functions

4.66 ps3000aSigGenArbitraryMinMaxValues
Pl CO_STATUS ps3000aSi gGenAr bi t raryM nMaxVal ues

(
intl6 t handl e,
intl6_t * m nArbitraryWavef or nval ue,
intl6_t * maxArbitraryWavef or nival ue,
uint32_t * mnArbitraryWavef orni ze,
uint32_t * maxArbitraryWavef ornSi ze

)

This function returns the range of possible sample values and waveform buffer sizes
that can be supplied to ps3000aSetSignGenArbitrary() for setting up the arbitrary
waveform generator (AWG). These values vary between different models in the
PicoScope 3000 Series.

Applicability |All models with AWG
Arguments handl e, the handle of the required device.

m nAr bi trar yWavef or nval ue, on exit, the lowest sample value
allowed in the ar bi t r ar yWavef or m buffer supplied to
ps3000aSetSignGenArbitrary().

maxAr bi trar yWavef or nval ue, on exit, the highest sample value
allowed in the ar bi t r ar yWavef or m buffer supplied to
ps3000aSetSignGenArbitrary().

m nAr bi traryWavef or nSi ze, on exit, the minimum value
allowed for the ar bi t r ar yWAvef or nSi ze argument supplied to
ps3000aSetSignGenArbitrary().

maxAr bi trar yWavef or nSi ze, on exit, the maximum value
allowed for the ar bi t r ar yWAvef or n5Si ze argument supplied to
ps3000aSetSignGenArbitrary().

Returns Pl CO_K
Pl CO_NOT_SUPPORTED _BY_THI S _DEVI CE, if the device does not
have an arbitrary waveform generator.
Pl CO NULL_PARAMETER, if all the parameter pointers are NULL.
Pl CO_ | NVALI D_HANDLE
Pl CO DRI VER_FUNCTI ON

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 105

4.67 ps3000aSigGenFrequencyToPhase
Pl CO_STATUS ps3000aSi gGenFr equencyToPhase

(
intl6 t handl e,
doubl e frequency,
PS3000A | NDEX MODE i ndexMode,
uint32_t buf f er Lengt h,
uint32_t * phase

)

This function converts a frequency to a phase count for use with the arbitrary
waveform generator (AWG). The value returned depends on the length of the buffer,
the index mode passed and the device model. The phase count can then be sent to the
driver through ps3000aSetSigGenArbitrary() or
ps3000aSetSigGenPropertiesArbitrary().

Applicability |All models with AWG
Arguments handl e, the handle of the required device.

f requency, the required AWG output frequency.

i ndexMbde, see AWG index modes.

buf f er Lengt h, the number of samples in the AWG buffer.

phase, on exit, the del t aPhase argument to be sent to the AWG
setup function

Returns Pl CO_K
Pl CO_NOT_SUPPORTED_BY_THI S_DEVI CE, if the device does not
have an AWG.
Pl CO_SI GGEN_FREQUENCY_OUT_OF RANGE, if the frequency is out
of range.

Pl CO NULL_PARAMETER, if phase is a NULL pointer.

Pl CO_SI G GEN_PARAM if i ndexMode or buf f er Lengt h is out of
range.

Pl CO_| NVALI D_HANDLE

Pl CO_DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

106 API functions

4.68 ps3000aSigGenSoftwareControl
Pl CO_STATUS ps3000aSi gGenSof t war eCont r ol

intl6_t handl e,
intlé t state

)

This function causes a trigger event, or starts and stops gating. It is used when the
signal generator is set to SI GGEN_SOFT_TRI G

Applicability |Use with ps3000aSetSigGenBuiltIn() or
ps3000aSetSigGenArbitrary().

Arguments handl e, the handle of the required device

stat e, sets the trigger gate high or low when the trigger type is
set to either SI GGEN_GATE _HI GH or SI GGEN_GATE _LOW Ignored
for other trigger types.
Returns PI CO_K
Pl CO_ | NVALI D_HANDLE
Pl CO_NO_SI GNAL _GENERATOR
Pl CO_SI GGEN_TRI GGER_SOURCE
Pl CO DRI VER_FUNCTI ON
Pl CO_NOT_RESPONDI NG

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 107

4.69 ps3000aStop
Pl CO_STATUS ps3000asSt op

int16_t handle
)

This function stops the scope device from sampling data. If this function is called
before a trigger event occurs, the oscilloscope may not contain valid data.

Always call this function after the end of a capture to ensure that the scope is ready
for the next capture.

Applicability |All modes

Arguments handl e, the handle of the required device.
Returns Pl CO_ K

PI CO_| NVALI D_HANDLE

Pl CO USER CALLBACK

PI CO DRI VER_FUNCTI ON

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

108

API functions

4.70 ps3000aStreamingReady (callback)
typedef void (CALLBACK *ps3000aStr eam ngReady)

«
intl1l6 t
int32 t
uint32_t
intl1l6 t
uint32_t
intl1l6 t
intl6 t
voi d

)

handl e,
noCf Sanpl es,
start!| ndex,
overfl ow,
triggerAt,
triggered,
aut oSt op,

* pPar anet er

This callback function is part of your application. You register it with the driver using
ps3000aGetStreaminglLatestValues(), and the driver calls it back when streaming-

mode data is ready. You can then download the data using the
ps3000aGetValuesAsync() function.

Your callback function should do nothing more than copy the data to another buffer
within your application. To maintain the best application performance, the function
should return as quickly as possible without attempting to process or display the data.

Applicability
Arguments

Returns

Streaming mode only

handl e, the handle of the device returning the samples.
noOr Sanpl es, the number of samples to collect.

start |l ndex, an index to the first valid sample in the buffer. This is
the buffer that was previously passed to ps3000aSetDataBuffer().

over fl ow, returns a set of flags that indicate whether an
overvoltage has occurred on any of the channels. It is a bit pattern
with bit 0 denoting Channel A.

triggerAt, an index to the buffer indicating the location of the
trigger point relative to st art | ndex. This parameter is valid only
when t ri ggered is non-zero.

tri ggered, aflagindicating whether a trigger occurred. If non-
zero, a trigger occurred at the location indicated by t ri gger At .

aut oSt op, the flag that was set in the call to
ps3000aRunStreaming().

* pParanet er, a void pointer passed from
ps3000aGetStreaminglLatestValues(). The callback function can write

to this location to send any data, such as a status flag, back to the
application.

nothing

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 109

5 Wrapper functions

The wrapper functions are for use with programming languages that do not support
features of C such as callback functions. To use the wrapper functions you must
include the ps3000aW ap. dl | library, which is supplied in the SDK, in your project.

For all other functions, see the list of API functions.

5.1 Using the wrapper functions for streaming data capture

1.

9.

Open the oscilloscope using ps3000a0OpenUnit().

la. Register the handle with the wrapper and obtain a device index for use with
some wrapper function calls by calling initWrapUnitInfo().

1b. Inform the wrapper of the number of channels on the device by calling
setChannelCount().

1c. [MSOs only] Inform the wrapper of the number of digital ports on the
device by calling setDigitalPortCount().

Select channels, ranges and AC/DC coupling using ps3000aSetChannel().

2a. Inform the wrapper which channels have been enabled by calling
setEnabledChannels().

2b. [MSOs only] Inform the wrapper which digital ports have been enabled by
calling setEnabledDigitalPorts().

[MSOs only] Set the digital port using ps3000aSetDigitalPort().

Use the trigger setup functions ps3000aSetTriggerChannelConditionsV2(),
ps3000aSetTriggerChannelDirections() and ps3000aSetTriggerChannelProperties()

to set up the trigger if required. For programming languages that do not support
structures, use the wrapper's SetTriggerConditionsV2() in place of
ps3000aSetTriggerCHannelConditionsV2() and SetTriggerProperties() in place of

ps3000aSetTriggerChannelProperties().

[MSOs only] Use the trigger setup function
ps3000aSetTriggerDigitalPortProperties() to set up the digital trigger if required.

Call ps3000aSetDataBuffer() to tell the driver where your data buffer is.

6a. Register the data buffer(s) with the wrapper and set the application buffer
into which the data will be copied.
- For analog channels: Call setAppAndDriverBuffers() or
setMaxMinAppAndDriverBuffers().
- [MSOs Only] For digital ports: Call setAppAndDriverDigiBuffers() or
setMaxMinAppAndDriverDigiBuffers().

Set up aggregation and start the oscilloscope running using
ps3000aRunStreaming().

Loop and call GetStreaminglLatestValues() and IsReady() to get data and flag

when the wrapper is ready for data to be retrieved.

8a. Call the wrapper’s AvailableData() function to obtain information on the
number of samples collected and the start index in the buffer.

8b. Call the wrapper’s IsTriggerReady() function for information on whether a
trigger has occurred and the trigger index relative to the start index in the
buffer.

Process data returned to your application's function.

10. Call ps3000aStop(), even if Auto Stop is enabled.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

110 Wrapper functions

11. To disconnect a device, call ps3000aCloseUnit() followed by the wrapper's
decrementDeviceCount() function.

12. Call the resetNextDevicelndex() wrapper function.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 111

52 AutoStopped
intl6_t AutoStopped

uint16_t devi cel ndex

)

This function indicates if the device has stopped after collecting of the number of
samples specified in the call to ps3000aRunStreaming(). This occurs only if the
ps3000aRunStreaming() function's aut ost op flag is set.

Applicability |Streaming mode

Arguments devi cel ndex, identifies the required device

Returns 0 - if streaming has not stopped or devi cel ndex is out of
range

<> 0 - if streaming has stopped automatically

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

112 Wrapper functions

5.3 AvailableData
uint32_t Avail abl eData

ui nt 16_t devi cel ndex,
uint32_t * startlndex

)

This function indicates the number of samples returned from the driver and shows the
start index of the data in the buffer when collecting data in streaming mode.

Applicability |Streaming mode
Arguments devi cel ndex, identifies the required device

startl ndex, on exit, an index to the first valid sample in the
buffer (when data is available)

Returns 0 - data is not yet available or the device index is invalid
<>0 - the number of samples returned from the driver

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

113

5.4 BlockCallback
voi d Bl ockCal | back

intl6 t handl e,
Pl CO_ STATUS status,

voi d

)

* pPar anet er

This is a wrapper for the ps3000aBlockReady() callback. The driver calls it back when

block-mode data is ready.

Applicability |Block mode

Arguments

See ps3000aBlockReady()

Returns

Nothing

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

ps3000apg.enr13

114 Wrapper functions

5.5 ClearTriggerReady
Pl CO STATUS d ear Tri gger Ready

uint16_t devi cel ndex

)

This function clears the t ri ggered and tri gger edAt flags for use with streaming-
mode capture.

Applicability |Streaming mode

Arguments devi cel ndex, identifies the device to use

Returns Pl CO _OK, if successful
Pl CO_| NVALI D_PARAMETER, if devi cel ndex is out of bounds

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 115

5.6 decrementDeviceCount
Pl CO_STATUS decr enent Devi ceCount

uint16_t devi cel ndex

)

Reduces the count of the number of PicoScope devices being controlled by the
application.

Note: This function does not close the connection to the device being controlled. Use
the ps3000aCloseUnit() function for this.

Applicability |All modes
Arguments devi cel ndex, identifies the device to use

Returns Pl CO _OK, if successful
Pl CO_| NVALI D_PARAMETER, if devi cel ndex is out of bounds

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

116 Wrapper functions

5.7 getDeviceCount

uint 16_t get Devi ceCount
(

voi d
)

This function returns the number of PicoScope 3000 Series devices being controlled by
the application.

Applicability |All modes
Arguments None

Returns The number of PicoScope 3000 Series devices being controlled

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 117

5.8 GetStreaminglatestValues
Pl CO_STATUS GCet Stream nglLat est Val ues

uint16_t devi cel ndex

)

This function returns the next block of values to your application when capturing data

in streaming mode. Use with programming languages that do not support callback
functions.

Applicability |Streaming mode
Arguments devi cel ndex, identifies the required device

Returns Pl CO | NVALI D_PARAMETER, if devi cel ndex is invalid
See also ps3000aGetStreaminglLatestValues() return values

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

118 Wrapper functions

5.9 initWrapUnitinfo
Pl CO_STATUS i ni t WapUnitlnfo

int16_t handl e,
uintl6_t * devicel ndex

)

This function initializes a WRAP_UNI T_| NFO structure for a PicoScope 3000 Series
device and places it in the g_devi cel nf 0 array at the next available index.

The wrapper supports a maximum of 4 devices.

Your main application should map the handle to the index starting with the first handle
corresponding to index 0.

Applicability |All modes

Arguments devi cel ndex, on exit, the index at which the WRAP_UNI T_I| NFO
structure will be stored in the g_devi cel nf o array

Returns Pl CO _OK, if successful
Pl CO_| NVALI D_HANDLE, if the handle is less than or equal to 0
Pl CO_ MAX _UNI TS_OPENED, if the wrapper already has records for
the maximum number of devices that it will support

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 119

5.10 IsReady
intl6_t |sReady

uint16_t devi cel ndex

)

This function polls the driver to verify that streaming data is ready to be received. The

RunBlock() or GetStreaminglLatestValues() function must have been called before
calling this function.

Applicability |Streaming mode. (In block mode, we recommend using
ps3000alsReady() instead.)

Arguments devi cel ndex, the index assigned by the wrapper corresponding to
the required device
Returns 0 - data is not yet available or devi cel ndex is out of range

<>0 - data is ready to be collected

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

120 Wrapper functions

5.11 IsTriggerReady
intl6 t IsTriggerReady

ui nt 16_t devi cel ndex
uint32_t * triggeredAt

)

This function indicates whether a trigger has occurred when collecting data in
streaming mode, and provides the location of the trigger point in the buffer.

Applicability |Streaming mode

Arguments devi cel ndex, the index assigned by the wrapper corresponding to
the required device

triggeredAt, on exit, the index of the sample in the buffer where
the trigger occurred, relative to the first valid sample index. This
value is set to 0 when the function returns 0.

Returns 0 - the device has not triggered, or devi cel ndex is invalid
<>0 - the device has been triggered

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 121

5.12 resetNextDevicelndex

Pl CO_STATUS r eset Next Devi cel ndex
(

)

voi d

This function is used to reset the index used to determine the next point at which to
store a WRAP_UNI T_I NFO structure.

Call this function only after the devices have been disconnected.

Applicability |All modes
Arguments None
Returns Pl CO X

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

122

Wrapper functions

5.13 RunBlock

Pl CO STATUS RunBIl ock

(
uint16_t
int32 t
int32_t
ui nt 32_t
uint32_t

)

devi cel ndex,
preTrigger Sanpl es,
post Tri gger Sanpl es,
ti nebase,
segnent | ndex

This function starts collecting data in block mode without the requirement for

specifying callback functions. Use the IsReady function to poll the driver once this
function has been called.

Applicability
Arguments

Returns

Block mode
devi cel ndex, the index assigned by the wrapper corresponding to
the required device

preTrigger Sanpl es, see noOf PreTri gger Sanpl es in
ps3000aRunBlock()

post Tri gger Sanpl es, see noOf PreTri gger Sanpl es in
ps3000aRunBlock()

ti nebase, see ps3000aRunBlock()
segnent | ndex, see ps3000aRunBlock()

See ps3000aRunBlock() return values

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 123

5.14 setAppAndDriverBuffers

Pl CO_STATUS set AppAndDri verBuf fers
(

uint16_t devi cel ndex,

intl6 t channel ,

intlé6_t * appBuffer,

intl6 t * driverBuffer,

ui nt 32_t buf f er Lengt h
)

This function sets the application buffer and corresponding driver buffer in order for
the streaming callback to copy the data for the analog channel from the driver buffer
to the application buffer.

Applicability |Streaming mode

Arguments devi cel ndex, the index assigned by the wrapper corresponding to
the required device

channel , the channel number (should be a numerical value
corresponding to a PS3000A CHANNEL enumeration value)

appBuf f er, the application buffer
driverBuffer, the buffer set by the driver

buf f er Lengt h, the length of the buffers (the lengths of the buffers
must be equal)
Returns Pl CO_OK, if successful
Pl CO | NVALI D_PARAMETER, if devi cel ndex is out of bounds
Pl CO_I NVALI D_CHANNEL, if channel is not valid

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

124

Wrapper functions

5.15 setMaxMinAppAndDriverBuffers
Pl CO_STATUS set MaxM nAppAndDri ver Buf f ers

(
uint16_t
intl6 t
intl6_ t
intl6 t
intl6_ t
intl6 t
ui nt 32_t

)

devi cel ndex,
channel ,
appMaxBuf f er,
appM nBuf f er,
dri ver MaxBuf f er,
driver M nBuf fer,
buf f er Lengt h

* ok ¥ X

Set the application buffer and corresponding driver buffer in order for the streaming
callback to copy the data for the analog channel from the driver maximum and
minimum buffers to the respective application buffers for aggregated data collection.

Applicability
Arguments

Returns

Streaming mode

devi cel ndex, the index assigned by the wrapper corresponding to
the required device

channel , the channel number (should be a numerical value
corresponding to a PS3000A CHANNEL enumeration value)

appMaxBuf f er, the application buffer for maximum values (the
'max buffer')

appM nBuf f er, the application buffer for minimum values (the
'min buffer")

driver MaxBuf f er, the max buffer set by the driver
driver M nBuffer, the min buffer set by the driver

buf f er Lengt h, the length of the buffers (the lengths of the buffers
must be equal)

Pl CO_OK, if successful

Pl CO | NVALI D_PARAMETER, if devi cel ndex is out of bounds

Pl CO_I NVALI D_CHANNEL, if channel is not valid

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 125

5.16 setAppAndDriverDigiBuffers

Pl CO_STATUS set AppAndDri ver Di gi Buffers
(

uint16_t devi cel ndex,

intl6 t di gi Port,

intl6_t * appDigi Buffer,

intl6 t * driverD giBuffer,

ui nt 32_t buf f er Lengt h
)

This function sets the application buffer and corresponding driver buffer in order for
the streaming callback to copy the data for the digital port from the driver buffer to
the application buffer.

Applicability |[Streaming mode. PicoScope 3000 MSO and 3000D MSO models only.

Arguments devi cel ndex, the index assigned by the wrapper corresponding to
the required device

di gi Port, the digital port number (0 or 1)
appDi gi Buf f er, the application buffer for the digital port

driverDigital Buf fer, the buffer for the digital port set by the
driver

buf f er Lengt h, the length of the buffers (the lengths of the buffers
must be equal)

Returns Pl CO_OK, if successful
Pl CO | NVALI D_PARANMETER, if devi cel ndex is out of bounds
Pl CO | NVALI D DI G TAL_PORT, ifdigi Port isnotO (Port0)or1
(Port 1)

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

126

Wrapper functions

5.17 setMaxMinAppAndDriverDigiBuffers
Pl CO_STATUS set MaxM nAppAndDri ver Di gi Buffers

(
uint16_t
intl6 t
intl6_ t
intl6 t
intl6_ t
intl6 t
ui nt 32_t

)

devi cel ndex,

di gi Port,

appMaxDi gi Buf fer,
appM nDi gi Buf fer,
dri ver MaxDi gi Buf f er,
driverM nDi gi Buf fer,
buf f er Lengt h

* ok ¥ X

This functions sets the application buffers and corresponding driver buffers in order for
the streaming callback to copy the data for the digital port from the driver 'max' and
'min' buffers to the respective application buffers for aggregated data collection.

Applicability
Arguments

Returns

Streaming mode. PicoScope 3000 MSO and 3000D models only.

devi cel ndex, the index assigned by the wrapper corresponding to
the required device

di gi Port, the digital port number (0 or 1)
appMaxDi gi Buf f er, the application max. buffer for the digital port
appM nDi gi Buf f er, the application min. buffer for the digital port

driver MaxDi gi Buf f er, the max. buffer set by the driver for the
digital port

driver M nDi gi Buf fer, the min. buffer set by the driver for the
digital port

buf f er Lengt h, the length of the buffers (the lengths of the buffers
must be equal)

Pl CO_OK, if successful

Pl CO | NVALI D_PARANETER, if devi cel ndex is out of bounds

Pl CO | NVALI D DI G TAL_PORT, ifdigi Port isnotO (Port0)or1
(Port 1)

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 127

5.18 setChannelCount
Pl CO_STATUS set Channel Count

uint 16_t devi cel ndex,
intl6 t channel Count

)

This function sets the number of analog channels on the device. This is used to assist
with copying data in the streaming callback.

The initWrapUnitInfo() must have been called before this function is called.

Applicability |Streaming mode

Arguments devi cel ndex, the index assigned by the wrapper corresponding to
the required device

channel Count, the number of channels on the device
Returns Pl CO _OK, if successful

Pl CO_I| NVALI D_PARAMETER, if devi cel ndex is out of bounds or
channel Count is not 2 or 4

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

128

Wrapper functions

5.19 setDigitalPortCount
Pl CO_STATUS set Di gi t al Port Count

uint 16_t devi cel ndex,

intl6 t
)

di gi t al Port Count

Set the number of digital ports on the device. This is used to assist with copying data
in the streaming callback.

You must call initWrapUnitInfo() before calling this function.

Applicability
Arguments

Returns

Streaming mode

devi cel ndex, the index assigned by the wrapper corresponding to
the required device

di gi t al Port Count, the number of digital ports on the device. Set
to 2 for the PicoScope 3000 MSO and 3000D MSO devices and 0 for
other models.

Pl CO _OK, if successful

Pl CO_| NVALI D_PARAMETER, devi cel ndex is out of bounds or

di gi tal Port Count is invalid

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 129

5.20 setEnabledChannels
Pl CO_STATUS set Enabl edChannel s

uint16_t devi cel ndex,
intl6 t * enabl edChannel s

)

Set the number of enabled analog channels on the device. This is used to assist with
copying data in the streaming callback.

You must call setChannelCount() before calling this function.

Applicability |Streaming mode

Arguments devi cel ndex, the index assigned by the wrapper corresponding to
the required device

enabl edChannel s, an array of 4 elements representing the
channel states

Returns Pl CO _OK, if successful
Pl CO_I| NVALI D_PARAMETER, if devi cel ndex is out of bounds or
channel Count is not 2 or 4

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

130 Wrapper functions

5.21 setEnabledDigitalPorts
Pl CO_STATUS set Enabl edDi gi tal Ports

uint16_t devi cel ndex,
intl6 t * enabledDi gital Ports
)

This function sets the number of enabled digital ports on the device. This is used to
assist with copying data in the streaming callback.

For PicoScope 3000 MSO and 3000D MSO models, you must call setDigitalPortCount()
first.

Applicability |Streaming mode

Arguments devi cel ndex, the index assigned by the wrapper corresponding to
the required device

enabl edDi gi tal Ports, an array of 4 elements representing the
digital port states

Returns Pl CO _OK, if successful
Pl CO_| NVALI D_PARAMETER, if devi cel ndex is out of bounds, or
di gi tal Port Count is invalid

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 131

5.22 SetPulseWidthQualifier
Pl CO_STATUS Set Pul seW dt hQual i fi er

(
int16_t handl e,
uint32_t * pwgConditionsArray,
int16_t nCondi ti ons,
uint32_t direction,
uint32_t | ower,

ui nt 32_t upper,
uint32_t type
)

This function sets up pulse-width qualification, which can be used on its own for pulse-
width triggering or combined with level triggering or window triggering to produce
more complex triggers.

The pulse-width qualifier is defined by one or more sets of integers corresponding to
PS3000A PWQ CONDI TI ONS structures which are then converted and passed to
ps3000aSetPulseWidthQualifier().

Use this function with programming languages that do not support structs.

Applicability |Analog-input models only (for MSOs, use
SetPulseWidthQualifierV2())

Arguments handl e, the handle of the required device

pwgCondi ti onsArray, an array of integer values specifying the
conditions for each channel

nCondi ti ons, the number that will be passed after the wrapper
code has created its structures (i.e. the number of
pwgCondi ti onsArray elements/ 6)

di rection, the direction of the signal required for the pulse width
trigger to fire (see PS3000A_ THRESHOLD DI RECTI ON
enumerations)

| ower, the lower limit of the pulse-width counter, measured in
samples

upper, the upper limit of the pulse-width counter, measured in
samples

t ype, the pulse-width type (see PS3000A PULSE W DTH_TYPE
enumerations)
Returns See ps3000aSetPulseWidthQualifier() return values

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

132

Wrapper functions

5.23 SetPulseWidthQualifierV2
Pl CO_STATUS Set Pul seW dt hQual i fi er V2

-
intl6 t
ui nt 32_t
intl6_ t
uint32_t
ui nt 32_t
ui nt 32_t
ui nt 32_t

)

handl e,

* pwgCondi ti onsArrayV2,
nCondi ti ons,
direction,
| ower,
upper,
type

This function sets up pulse-width qualification, which can be used on its own for pulse-
width triggering or combined with level triggering or window triggering to produce
more complex triggers.

The pulse-width qualifier is defined by one or more sets of integers corresponding to
PS3000A PWQ CONDI TI ONS_V2 structures which are then converted and passed to
ps3000aSetPulseWidthQualifierV2().

Use this function with programming languages that do not support structs.

Applicability
Arguments

Returns

All models
handl e, the handle of the required device

pwgCondi ti onsArray, an array of integer values specifying the
conditions for each channel

nCondi ti ons, the number that will be passed after the wrapper
code has created its structures (i.e. the number of
pwgCondi ti onsArrayV2 elements/ 6)

di rection, the direction of the signal required for the pulse width
trigger to fire (see PS3000A THRESHOLD DI RECTI ON
enumerations)

| ower, the lower limit of the pulse-width counter, measured in
samples

upper, the upper limit of the pulse-width counter, measured in
samples

type, the pulse-width type (see PS3000A PULSE W DTH TYPE
enumerations)

See ps3000aSetPulseWidthQualifier() return values

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

133

5.24 SetTriggerConditions

Pl CO _STATUS Set Tri gger Condi ti ons

intl6_ t handl e,

int32_t * conditionsArray,

intl6_ t nCondi ti ons
)

This function sets up trigger conditions on the scope's inputs. The trigger is defined by
one or more sets of integers corresponding to PS3000A TRI GGER_CONDI TI ONS
structures which are then converted and passed to

ps3000aSetTriggerChannelConditions().

Use this function with programming languages that do not support structs.

Applicability |Analog-input models only (for MSOs use SetTriggerConditionsV2())

Arguments handl e, the handle of the required device

condi ti onsArray,
conditions for each channel

an array of integer values specifying the

nCondi ti ons, the number that will be passed after the wrapper
code has created its structures (i.e. the number of
condi ti onsArray elements divided by 7)

Returns See ps3000aSetTriggerChannelConditions() return values

Examples

Below are examples for using the function in Visual Basic.

To trigger off channels A OR B

Di m conditi onsArray(13) As Int eger

condi ti onsArray(0)
condi ti onsArray(1)
condi ti onsArray(2)
condi ti onsArray(3)
condi ti onsArray(4)
condi ti onsArray(5)
condi ti onsArray(6)

[clololoNeoNaN o

"o r* OR ed with

o

condi ti onsArray(7)
condi ti onsArray(8)
condi ti onsArray(9)
condi ti onsArray(10)
condi ti onsArray(11)
condi ti onsArray(12)
condi ti onsArray(13)

I
or

I T |
[cNoloNo)

channel A

channel B

channel C

channel D

ext er nal

aux

pul se width qualifier

channel A

channel B

channel C

channel D

ext er nal

aux

pul se width qualifier

status = Set Tri gger Condi ti ons(handl e, conditionsArray(0), 2)

To trigger off channels A AND B

Dim condi ti onsArray(6) As | nt eger

condi ti onsArray(0)
condi tionsArray(1)
condi ti onsArray(2)
condi ti onsArray(3)

OORr Pk

channel A
channel B
channel C
channel D

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

ps3000apg.en r13

134

Wrapper functions

condi tionsArray(4)
condi ti onsArray(5)
condi ti onsArray(6)

0
0
0

ext er nal
aux
pul se width qualifier

status = Set Tri gger Condi ti ons(handl e, conditionsArray(0), 1)

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 135

5.25 SetTriggerConditionsV2
Pl CO_STATUS Set Tri gger Condi ti onsV2

int16_t handl e,
int32_ t * conditionsArrayV2,
int16_t nCondi ti ons

)

This function sets up trigger conditions on the scope's inputs. The trigger is defined by
one or more sets of integers corresponding to PS3000A TRI GGER_CONDI TI ONS_V2
structures which are then converted and passed to
ps3000aSetTriggerChannelConditionsV2().

Use this function with programming languages that do not support structs.

Applicability |All models
Arguments handl e, the handle of the required device

condi ti onsArrayV2, an array of integer values specifying the
conditions for each channel

nCondi ti ons, the number that will be passed after the wrapper
code has created its structures (i.e. the number of
condi ti onsArray elements divided by 8)

Returns See ps3000aSetTriggerChannelConditionsV2() return values

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

136

Wrapper functions

5.26

* propertiesArray,

SetTriggerProperties
Pl CO_STATUS Set Tri gger Properties
(
intl6_ t handl e,
int32 t
intl6_ t nProperties,
int32_t autoTrig
)

This function is used to enable or disable triggering and set its parameters. This is
done by assigning the values from the properti esArray to an array of
PS3000A TRI GGER_CHANNEL_PROPERTI ES structures which are then passed to the

ps3000aSetTriggerChannelProperties() function with the other parameters.

Use this function with programming languages that do not support structs.

Applicability |All modes

Arguments
propertiesArray,
nProperti es,
aut oTri g,
Returns
Example

handl e, the handle of the required device

an array of sets of integers corresponding to
PS3000A TRI GGER_CHANNEL PROPERTI ES structures describing
the required properties to be set. See also channel Properti es in
ps3000aSetTriggerChannelProperties().

the number that will be passed after the wrapper
code has created its structures (i.e. the number of
properti esArray elements divided by 6)

see aut oTri ggerM | | i seconds in
ps3000aSetTriggerChannelProperties()

See ps3000aSetTriggerChannelProperties() return values

Here is an example for using the function in Visual Basic:

Di m propertiesArray(11) As Integer

" channel A

properti esArray(0)
propertiesArray(1)
properti esArray(2)
propertiesArray(3)
properti esArray(4)
propertiesArray(5)

' channel B

properti esArray(6)
propertiesArray(7)
properti esArray(8)
propertiesArray(9)

properti esArray(10)
propertiesArray(11)

status = Set Tri gger Properties(handl e,

1000)

= 1500 ' Upper

= 300 ' UpperHysteresis

=0 " Lower

=0 " Lower Hysteresis

=0 " channel (0=ChA, 1=ChB, 2=ChC, 3=ChD)
=0 " threshol dvbde (Level =0, W ndow=1)

= 1500 ' Upper

= 300 ' UpperHysteresis

=0 " Lower

=0 " Lower Hysteresis
=1 " channel (0=ChA, 1=ChB, 2=ChC, 3=ChD)
=0 " threshol dvbde (Level =0, W ndow=1)

propertiesArray(0), 2, O,

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 137

5.27 StreamingCallback
voi d Streamni ngCal | back

(
intl6_ t handl e,
int32 t nor Sanpl es,
uint32_t startl ndex,
intl6 t overfl ow,
uint32_t triggerAt,
intl16_t triggered,
intl6 t aut oSt op,
voi d * pPar anet er

)

This is a wrapper for the ps3000aStreamingReady() callback. The driver calls it back
when streaming-mode data is ready.

Applicability |Streaming mode

Arguments See ps3000aStreamingReady()
Returns Nothing

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

138

Programming examples

6.1

6.2

Programming examples

Example code is provided in a number of programming languages. You may freely
modify this code for your own applications.

C

The C example program is a comprehensive console mode program that demonstrates
all of the facilities of the driver.

To compile the program, create a new project for an Application containing the
following files: -

® ps3000acon. c
® ps3000a.lib (Microsoft Visual C 32-bit applications)

The following files must be in the compilation directory:

® ps3000aApi . h
® picoStatus.h

and the following files must be in the same directory as the executable:

® ps3000a. dl |
® Picol pp.dll

An example Microsoft Visual C++ 2010 Express project is included in the SDK in the
C_Consol e folder. 64-bit versions of ps3000a. dl |, Pi col pp.dl | and
ps3000a. | i b are provided in the SDK's x64 directory.

C#
The following files, located in the SDK's PS3000ACSConsol e folder, are required:

® Assenbl ylI nfo. cs

® PS3000ACSConsol e. cs

® PS3000AI nports.cs

® PS3000APi nnedArray. cs
® ps3000a. dl |

® Pi col pp. dl |

To build the Windows Console application from the Microsoft Visual Studio IDE (2010
Express or later):

® Load the PS3000ACSConsol e. sl n solution file into the IDE.
@ Press F6 to build the solution or click Debug > Build Solution.

Ensure that the ps3000a. dl I and Pi col pp. dl | files are in the search path.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 139

6.3

6.4

Excel
The examples are located in the Excel folder of the SDK.

1. Load the spreadsheet ps3000a. x| sm
2. Select Tools | Macro

3. Select GetData

4. Select Run

A 64-bit version (ps3000aV2_x64. x| sm) is also included. The examples are
compatible with Microsoft Office 2007 and later. To run the examples, click the Get
Block or Run Streaming buttons. To edit the examples:

1. Click View > Macros > View Macros
2. Select GetData or StreamingData and click Edit

A Legacy folder contains the old version of the example.

Note: The Excel macro language is similar to Visual Basic. The functions which return
a TRUE/FALSE value, return 0 for FALSE and 1 for TRUE, whereas Visual Basic
expects 65535 for TRUE. Check for >0 rather than =TRUE.

As Excel VBA does not support the callback features of the PicoScope API, additional
wrapper functions are provided.

LabVIEW

The SDK contains a library of VIs that can be used to control the oscilloscope. It also
includes some simple examples of using these VIs in streaming mode, block mode and
rapid block mode, and for controlling the function generator and arbitrary waveform
generator.

As LabVIEW does not support the callback features of the PicoScope API, additional
wrapper functions are provided.

Versions of the data acquisition examples for mixed-signal oscilloscopes are also
provided, as is a 64-bit block mode capture example.

The LabVIEW library (Pi coScope3000a. | | b) can be placed in theuser.|lib

subdirectory to make the VIs available on the ‘User Libraries’ palette. You must also
copy ps3000a.dl |, Picolpp.dll and ps3000aw ap.dl| tothe LabVIEW

installation's resource folder.
The library contains the following VIs:

@® PicoErrorHandl er. vi - takes an error cluster and, if an error has occurred,
displays a message box indicating the source of the error and the status code
returned by the driver.

® Pi coScope3000aAdvancedTri gger Setti ngs. vi - an interface for the advanced
trigger features of the oscilloscope.

This VI is not required for setting up simple triggers, which are configured using
Pi coScope3000aSetti ngs. vi .

For further information on these trigger settings, see descriptions of the trigger
functions:

ps3000aSetTriggerChannelConditionsV2()

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

140

Programming examples

ps3000aSetTriggerChannelDirectionsV2()
ps3000aSetTriggerChannelProperties()
ps3000aSetTriggerDigitalPortProperties()
ps3000aSetPulseWidthQualifier()
ps3000aSetTriggerDelay()

Pi coScope3000aAWG. vi - controls the arbitrary waveform generator.

Standard waveforms or an arbitrary waveform can be selected under ‘Wave Type'.
There are three settings clusters: general settings that apply to both arbitrary and
standard waveforms, settings that apply only to standard waveforms and settings
that apply only to arbitrary waveforms. It is not necessary to connect all of these
clusters if only using arbitrary waveforms or only using standard waveforms.

When selecting an arbitrary waveform, it is necessary to specify a text file
containing the waveform. This text file should have a single value on each line in
the range -1 to +1. For further information on the settings, see descriptions of
ps3000aSetSigGenBuiltIn() and ps3000aSetSigGenArbitrary().

Pi coScope3000ad ose. vi - closes the oscilloscope.
Should be called before exiting an application.
Pi coScope3000atCet Bl ock. vi - collects a block of data from the oscilloscope.

This can be called in a loop in order to continually collect blocks of data. The
oscilloscope should first be set up by using Pi coScope3000aSetti ngs. vi. The VI
outputs data arrays in two clusters (max and min). If not using aggregation, ‘Min
Buffers’ is not used.

Pi coScope3000ACGet Rapi dBl ock. vi - collects a set of data blocks or captures
from the oscilloscope in rapid block mode.

This VI is similar to Pi coScope3000AGet Bl ock. vi . It outputs two-dimensional
arrays for each channel that contain data from all the requested number of
captures.

Pi coScope3000aCet Rapi dBl ockBul k. vi - similar to
Pi coScope3000aCet Rapi dBl ock. vi but retrieves all the data using
ps3000aGetValuesBulk().

Pi coScope3000aCet St reamn ngVal ues. vi - used in streaming mode to get the
latest values from the driver.

This VI should be called in a loop after the oscilloscope has been set up using

Pi coScope3000aSetti ngs. vi and streaming has been started by calling

Pi coScope3000asSt art Streani ng. vi . The VI outputs the number of samples
available and the start index of these samples in the array output by

Pi coScope3000aSt art Streani ng. vi .

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 141

6.5

® Pi coScope3000alpen. vi - opens a PicoScope 3000 Series (A API) oscilloscope
and returns a handle to the device.

® Pi coScope3000aPower Sour ce. vi - changes the power settings of a PicoScope
3000 Series device, where applicable.

® Pi coScope3000aSettings. vi - sets up the oscilloscope.

The inputs are clusters for setting up channels and simple triggers. Advanced
triggers can be set up using Pi coScope3000aAdvancedTri gger Setti ngs. vi .

® Pi coScope3000aSt art Stream ng. vi - starts the oscilloscope streaming.

It outputs arrays that will contain samples once
Pi coScope3000aCet St ream ngVal ues. vi has returned.

® Pi coScope3000aW ap. vi - retrieves a unique identifier from ps3000aW ap. di |
in order to support multiple devices and is also used to inform the wrapper DLL of
the number of analog channels and digital ports on the device as well as which
channels and ports are enabled.

® PicoStatus.vi - checks the status value returned by calls to the driver.

If the driver returns an error, the status member of the error cluster is set to ‘true’
and the error code and source are set.

® Pi coScope3000aUni t 1 nfo.vi - displays the device information for the
oscilloscope.

This VI can be called after opening the device and outputs a cluster containing the
information returned by calls to ps3000aGetUnitInfo() for each information type.

MATLAB

The MATLAB® examples consist of a generic Instrument Driver and accompanying
scripts demonstrating how to call the functions in order to operate the scope in
different modes. For further information, refer to the MATLAB Instrument Driver for
PicoScope 3000A/B Series - Guide to Functions document included in the SDK.

The following files will also be required:

® ps3000a. dl |
® ps3000aW ap. dl |
® Picol pp.dll

The examples supplied can be used with MATLAB 2012a or later. Version 3.1 or later
of the Instrument Control Toolbox will also be required.

As MATLAB does not support the callback features of the PicoScope API, additional
wrapper functions are provided.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

142 Programming examples

6.6 VB.NET

A basic VB.NET Console application is provided in the VB.NET folder in the SDK. The
following files will also be required:

® ps3000a. dl |
® Picol pp.dll

64-bit versions may be found in the SDK's x64 folder.

Build the project and place the DLL files in the same directory as the executable or
ensure that the location is listed in the Windows PATH environment variable.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 143

7

7.1

7.2

7.3

Reference

Numeric data types

Here is a list of the sizes and ranges of the numeric data types used in the ps3000a
API.

Type Bits Signed or unsigned?
intl6 t 16 signed

enum 32 enumerated

int32 t 32 signed

uint32 t 32 unsigned

f | oat 32 signed (IEEE 754)
int64 t 64 signed

Enumerated types, constants and structures

The enumerated types, constants and structures used in the ps3000a API are defined
in the file ps3000aApi . h. We recommend that you refer to these constants by name
unless your programming language allows only numerical values.

Driver status codes

Every function in the ps3000a driver returns a driver status code from the following
list of PI CO_STATUS values. These definitions can also be found in the file

pi coSt at us. h, which is included in the ps3000a SDK. Not all codes apply to the
ps3000a SDK.

Code |Symbol and meaning

(hex)
00 PI CO_ K

The PicoScope is functioning correctly
01 Pl CO_ MAX_UNI TS_OPENED

An attempt has been made to open more than PS3000A_ MAX UNI TS.

02 Pl CO_VEMORY_FAI L
Not enough memory could be allocated on the host machine

03 PI CO_NOT_FOUND
No PicoScope could be found

04 Pl CO_FW FAI L
Unable to download firmware
05 Pl CO_OPEN_OPERATI ON_| N_PROGRESS
06 Pl CO_OPERATI ON_FAI LED
07 Pl CO_NOT_RESPONDI NG
The PicoScope is not responding to commands from the PC
08 Pl CO_CONFI G_FAI L
The configuration information in the PicoScope has become corrupt or is
missing
09 Pl CO_KERNEL_DRI VER TOO OLD

The pi copp. sys file is too old to be used with the device driver

0A Pl CO_EEPROM_CORRUPT
The EEPROM has become corrupt, so the device will use a default setting

0B PI CO_OS_NOT_SUPPORTED
The operating system on the PC is not supported by this driver

0C Pl CO_| NVALI D_HANDLE

There is no device with the handle value passed

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.enr13

144

Reference

0D

Pl CO_I NVALI D_PARAMETER
A parameter value is not valid

OE

Pl CO_| NVALI D_TI MEBASE
The timebase is not supported or is invalid

OF

Pl CO_| NVALI D_VOLTAGE_RANGE
The voltage range is not supported or is invalid

10

Pl CO_| NVALI D_CHANNEL
The channel number is not valid on this device or no channels have been set

11

Pl CO_| NVALI D_TRI GGER_CHANNEL
The channel set for a trigger is not available on this device

12

Pl CO_| NVALI D_CONDI TI ON_CHANNEL
The channel set for a condition is not available on this device

13

Pl CO_NO_SI GNAL_GENERATOR
The device does not have a signal generator

14

Pl CO_STREAM NG_FAI LED
Streaming has failed to start or has stopped without user request

15

Pl CO_BLOCK_MODE_FAI LED
Block failed to start - a parameter may have been set wrongly

16

Pl CO_NULL_PARANMETER
A parameter that was required is NULL

18

Pl CO_DATA_NOT_AVAI LABLE
No data is available from a run block call

19

Pl CO_STRI NG BUFFER TOO SMALL
The buffer passed for the information was too small

1A

Pl CO_ETS_NOT_SUPPORTED
ETS is not supported on this device

1B

PI CO_AUTO TRI GGER Tl ME_TOO SHORT
The auto trigger time is less than the time it will take to collect the pre-trigger
data

1C

Pl CO_BUFFER_STALL
The collection of data has stalled as unread data would be overwritten

1D

PI CO_ TOO MANY_ SAMPLES
Number of samples requested is more than available in the current memory
segment

1E

Pl CO_ TOO MANY_SEGVENTS
Not possible to create number of segments requested

1F

PI CO PULSE_W DTH_QUALI FI ER
A null pointer has been passed in the trigger function or one of the
parameters is out of range

20

Pl CO_DELAY
One or more of the hold-off parameters are out of range

21

Pl CO_SOURCE_DETAI LS
One or more of the source details are incorrect

22

PI CO_CONDI TI ONS
One or more of the conditions are incorrect

23

Pl CO_USER CALLBACK
The driver's thread is currently in the ps3000a...Ready callback function and
therefore the action cannot be carried out

24

Pl CO_DEVI CE_SAMPLI NG
An attempt is being made to get stored data while streaming. Either stop
streaming by calling ps3000aStop, or use ps3000aGetStreaminglLatestValues

25

PI'CO NO SAMPLES_AVAI LABLE
...because a run has not been completed

26

Pl CO_SEGVENT_OUT_OF_RANGE

The memory index is out of range

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 145

27 Pl CO_BUSY

Data cannot be returned yet
28 Pl CO_STARTI NDEX_| NVALI D

The start time to get stored data is out of range
29 Pl CO_| NVALI D_I NFO

The information humber requested is not a valid number

2A Pl CO_| NFO_UNAVAI LABLE

The handle is invalid so no information is available about the device. Only
Pl CO DRI VER VERSI ON is available.

2B Pl CO_I| NVALI D_SAVPLE_| NTERVAL

The sample interval selected for streaming is out of range

2C Pl CO_TRI GGER_ERROR

2D Pl CO_VENORY

Driver cannot allocate memory

2E Pl CO_SI G_GEN_PARAM
Incorrect parameter passed to the signal generator

2F Pl CO_SHOTS_SWEEPS_ WARNI NG
Conflict between the shot s and sweeps parameters sent to the signal
generator

33 Pl CO WARNI NG EXT_THRESHOLD CONFLI CT

Attempt to set different EXT input thresholds set for signal generator and
oscilloscope trigger

35 Pl CO_SI GGEN_OUTPUT_OVER VOLTAGE

The combined peak to peak voltage and the analog offset voltage exceed the
allowable voltage the signal generator can produce

36 Pl CO_DELAY_NULL
NULL pointer passed as delay parameter
37 Pl CO_I NVALI D_BUFFER
The buffers for overview data have not been set while streaming
38 Pl CO_SI GGEN_OFFSET_VOLTAGE
The analog offset voltage is out of range
39 Pl CO_SI GGEN_PK_TO PK

The analog peak to peak voltage is out of range

3A Pl CO_CANCELLED

A block collection has been cancelled

3B Pl CO_SEGVENT_NOT_USED

The segment index is not currently being used

3C Pl CO_| NVALI D_CALL

The wrong GetValues function has been called for the collection mode in use

3F Pl CO_NOT_USED
The function is not available
40 Pl CO_| NVALI D_SAMPLERATI O
The aggregation ratio requested is out of range
41 Pl CO_I NVALI D_STATE
Device is in an invalid state
42 Pl CO_NOT_ENOUGH_SEGVENTS
The number of segments allocated is fewer than the number of captures
requested
43 Pl CO_DRI VER_FUNCTI ON
You called a driver function while another driver function was still being
processed
44 Pl CO_RESERVED
45 Pl CO_| NVALI D_COUPLI NG
An invalid coupling type was specified in ps3000aSetChannel
46 Pl CO BUFFERS_NOT_SET

An attempt was made to get data before a data buffer was defined

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.enr13

146

Reference

47

Pl CO_RATI O_MODE_NOT _SUPPORTED
The selected downsampling mode (used for data reduction) is not allowed

49

Pl CO_| NVALI D_TRI GGER_PROPERTY
An invalid parameter was passed to ps3000aSetTriggerChannelProperties

4A

Pl CO_| NTERFACE_NOT_CONNECTED
The driver was unable to contact the oscilloscope

4D

PI CO_SI GGEN_WAVEFORM SETUP_FAI LED
A problem occurred in ps3000aSetSigGenBuiltin or
ps3000aSetSigGenArbitrary

4E

Pl CO_FPGA_FAI L

4F

Pl CO_POAER_MANAGER

50

Pl CO_| NVALI D_ANALOGUE_OFFSET
An impossible analogue offset value was specified in ps3000aSetChannel

51

PI CO PLL_LOCK_FAI LED
Unable to configure the PicoScope

52

Pl CO_ANALOG _BOARD
The oscilloscope's analog board is not detected, or is not connected to the
digital board

53

Pl CO_CONFI G_FAI L_AWG
Unable to configure the signal generator

54

PI CO_I NI TI ALI SE_FPCGA
The FPGA cannot be initialized, so unit cannot be opened

56

Pl CO_EXTERNAL_FREQUENCY | NVALI D
The frequency for the external clock is not within £5% of the stated value

57

PI CO_CLOCK_CHANGE_ERRCR
The FPGA could not lock the clock signal

58

PI CO_ TRI GGER_AND_EXTERNAL_CLOCK_CLASH
You are trying to configure the AUX input as both a trigger and a reference
clock

59

Pl CO_ PWQ AND_EXTERNAL_CLOCK_CLASH
You are trying to congfigure the AUX input as both a pulse width qualifier and
a reference clock

5A

PI CO_UNABLE_TO OPEN SCALI NG FI LE
The scaling file set can not be opened.

5B

Pl CO_MVEMORY_CLOCK_FREQUENCY
The frequency of the memory is reporting incorrectly.

5C

PI CO_| 2C_NOT_RESPONDI NG
The I2C that is being actioned is not responding to requests.

5D

Pl CO_NO_CAPTURES_AVAI LABLE
There are no captures available and therefore no data can be returned.

5E

PI CO NOT_USED I N THI S_CAPTURE_MODE
The capture mode the device is currently running in does not support the
current request.

103

Pl CO_GET_DATA_ACTI VE
Reserved

104

PI CO_| P_NETWORKED
The device is currently connected via the IP Network socket and thus the call
made is not supported.

105

PI CO_| NVALI D_I P_ADDRESS
An IP address that is not correct has been passed to the driver.

106

Pl CO_| PSOCCKET _FAI LED
The IP socket has failed.

107

Pl CO_| PSOCKET_TI MEDOUT
The IP socket has timed out.

108

Pl CO_SETTI NGS_FAI LED

The settings requested have failed to be set.

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 147

109

Pl CO_NETWORK_FAI LED
The network connection has failed.

10A

PI CO Ws2_32_DLL_NOT_LOADED
Unable to load the WS2 dll.

10B

Pl CO_| NVALI D_I P_PORT
The IP port is invalid

10C

Pl CO_COUPLI NG_NOT_SUPPORTED
The type of coupling requested is not supported on the opened device.

10D

Pl CO_BANDW DTH_NOT_SUPPORTED
Bandwidth limit is not supported on the opened device.

10E

Pl CO_| NVALI D_BANDW DTH
The value requested for the bandwidth limit is out of range.

10F

Pl CO_AWG_NOT_SUPPORTED
The arbitrary waveform generator is not supported by the opened device.

110

PI CO_ ETS_NOT_RUNNI NG
Data has been requested with ETS mode set but run block has not been
called, or stop has been called.

111

Pl CO_SI G_GEN_WH TENO SE_NOT_SUPPORTED
White noise is not supported on the opened device.

112

PI CO_SI G_GEN_WAVETYPE_NOT_SUPPORTED
The wave type requested is not supported by the opened device.

113

PI CO_| N\VALI D_DI G TAL_PORT
A port number that does not evaluate to either PS3000A DI G TAL_PORTO or
PS3000A DI G TAL_PORT1, the ports that are supported.

114

PI CO_| NVALI D_DI G TAL_CHANNEL
The digital channel is not in the range PS3000A DI G TAL_CHANNELO to
PS3000_DI G TAL_CHANNEL15, the digital channels that are supported.

115

PI CO | N\VALI D_DI G TAL_TRI GGER_DI RECTI ON
The digital trigger direction is not a valid trigger direction and should be equal
in value to one of the PS3000A DI G TAL_DI RECTI ON enumerations.

116

PI CO_SI G_GEN_PRBS_NOT_SUPPORTED
Siggen does not generate pseudo-random bit stream.

117

Pl CO_ETS_NOT_AVAI LABLE_W TH_LOG C_CHANNELS
When a digital port is enabled, ETS sample mode is not available for use.

118

PI CO WARNI NG _REPEAT_VALUE
Not applicable to this device.

119

Pl CO_POAER_SUPPLY_CONNECTED
4-Channel only - The DC power supply is connected.

11A

PI CO_POWER SUPPLY_NOT_CONNECTED
4-Channel only - The DC power supply isn’t connected.

11B

Pl CO_ POAER_SUPPLY_ REQUEST | NVALI D
Incorrect power mode passed for current power source.

11C

Pl CO_PONER_SUPPLY_ UNDERVOLTAGE
The supply voltage from the USB source is too low.

11D

Pl CO_CAPTURI NG _DATA
The oscilloscope is in the process of capturing data.

11E

PI CO_USB3_0_DEVI CE_NON_USB3_0_PORT
A USB 3.0 device is connected to a non-USB 3.0 port.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.enr13

148

Reference

7.4

Glossary

AC/DC control. Each channel can be set to either AC coupling or DC coupling. With
DC coupling, the voltage displayed on the screen is equal to the true voltage of the
signal. With AC coupling, any DC component of the signal is filtered out, leaving only
the variations in the signal (the AC component).

Aggregation. The PicoScope 3000 driver can use a method called aggregation to
reduce the amount of data your application needs to process. This means that for
every block of consecutive samples, it stores only the minimum and maximum values.
You can set the number of samples in each block, called the aggregation parameter,
when you call ps3000aRunStreaming() for real-time capture, and when you call
ps3000aGetStreaminglLatestValues() to obtain post-processed data.

Aliasing. An effect that can cause digital oscilloscopes to display fast-moving
waveforms incorrectly, by showing spurious low-frequency signals ("aliases") that do
not exist in the input. To avoid this problem, choose a sampling rate that is at least
twice the frequency of the fastest-changing input signal.

Analog bandwidth. All oscilloscopes have an upper limit to the range of frequencies
at which they can measure accurately. The analog bandwidth of an oscilloscope is
defined as the frequency at which a displayed sine wave has half the power of the
input sine wave (or, equivalently, about 71% of the amplitude).

AWG. Arbitrary waveform generator. On selected models, the signal generator output
marked GEN or AWG can produce an arbitrary waveform defined by the user. Define
this waveform by calling ps3000SetSigGenArbitrary() and related functions.

Block mode. A sampling mode in which the computer prompts the oscilloscope to
collect a block of data into its internal memory before stopping the oscilloscope and
transferring the whole block into computer memory. This mode of operation is
effective when the input signal being sampled is high frequency. Note: To avoid
aliasing effects, the maximum input frequency must be less than half the sampling
rate.

Buffer size. The size, in samples, of the oscilloscope buffer memory. The buffer
memory is used by the oscilloscope to temporarily store data before transferring it to
the PC.

ETS. Equivalent Time Sampling. ETS constructs a picture of a repetitive signal by
accumulating information over many similar wave cycles. This means the oscilloscope
can capture fast-repeating signals that have a higher frequency than the maximum
sampling rate. Note: ETS should not be used for one-shot or non-repetitive signals.

External trigger. This is the BNC socket marked EXT or Ext. It can be used as a
signal to start data capture, but not as an analog input.

Flexible power. The 4-channel 3000 Series oscilloscopes can be powered by either
the USB port or the AC adapter supplied. A two-headed USB cable is supplied for
obtaining power from two USB ports.

Maximum sampling rate. A figure indicating the maximum number of samples the
oscilloscope is capable of acquiring per second. Maximum sample rates are given in
MS/s (megasamples per second). The higher the sampling capability of the
oscilloscope, the more accurate the representation of the high frequencies in a fast
signal.

MSO (Mixed signal oscilloscope). An oscilloscope that has both analog and digital
inputs.

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 149

Overvoltage. Any input voltage to the oscilloscope must not exceed the overvoltage
limit, measured with respect to ground, otherwise the oscilloscope may be
permanently damaged.

PC Oscilloscope. A measuring instrument consisting of a Pico Technology scope
device and the PicoScope software. It provides all the functions of a bench-top
oscilloscope without the cost of a display, hard disk, network adapter and other
components that your PC already has.

PicoScope software. This is a software product that accompanies all our
oscilloscopes. It turns your PC into an oscilloscope, spectrum analyzer, and meter
display.

Signal generator. This is a feature of some oscilloscopes which allows a signal to be
generated without an external input device being present. The signal generator output
is the BNC socket marked GEN or Gen on the oscilloscope. If you connect a BNC cable
between this and one of the channel inputs, you can send a signal into one of the
channels. It can generate a sine, square or triangle wave that can be swept back and
forth.

Spectrum analyzer. An instrument that measures the energy content of a signal in
each of a large number of frequency bands. It displays the result as a graph of energy
(on the vertical axis) against frequency (on the horizontal axis). The PicoScope
software includes a spectrum analyzer.

Streaming mode. A sampling mode in which the oscilloscope samples data and
returns it to the computer in an unbroken stream. This mode of operation is effective
when the input signal being sampled contains only low frequencies.

Timebase. The timebase controls the time interval across the scope display. There are
ten divisions across the screen and the timebase is specified in units of time per
division, so the total time interval is ten times the timebase.

USB 1.1. USB (Universal Serial Bus) is a standard port that enables you to connect
external devices to PCs. A USB 1.1 port supports a data transfer rate of 12 Mbps (12
megabits per second), much faster than an RS-232 port.

USB 2.0. A USB 2.0 port supports a data transfer rate of 480 Mbps and is backward-
compatible with USB 1.1.

USB 3.0. A USB 3.0 port supports a data transfer rate of 5 Gbps and is backwards-
compatible with USB 2.0 and USB 1.1.

Vertical resolution. A value, in bits, indicating the degree of precision with which the
oscilloscope can turn input voltages into digital values. Calculation techniques can
improve the effective resolution.

Voltage range. The voltage range is the difference between the maximum and
minimum voltages that can be accurately captured by the oscilloscope.

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

Technology

PicoScope 3000 Series (A API) Programmer's Guide

151

Index

A

AC adapter 5
AC/DC coupling 68
Access 2
ADC count 55,57
Aggregation 19
Analog offset 30, 68
Arbitrary waveform generator 83, 86
AWG
buffer lengths 104
sample values 104

B

Bandwidth limiter 68
Block mode 7,9, 10, 11
asynchronous call 11
callback 23
polling status 53
running 63

C

C programming 138
C# programming 138
Callback function 9, 17
block mode 23
for data 27
streaming mode 108
Channels
enabling 68
settings 68
Closing units 25
Communication 62
Connection 62
Constants 143

Copyright 2
Coupling type, setting 68

Data acquisition 19
Data buffers
declaring 69
declaring, aggregation mode 70
Data retention 5, 10
Digital connector 7
Digital data 6

Digital port 6

Downsampling 10, 44
maximum ratio 32, 33
modes 45

Driver 3

E

Enabling channels 68
Enumerated types 143
Enumerating oscilloscopes 28
ETS 9

overview 17

setting time buffers 73, 74

settingup 72

using 18
Excel macros 139

F

Fitness for purpose 2

Functions
list of 21
ps3000aBlockReady 23
ps3000aChangePowerSource 24
ps3000aCloseUnit 25
ps3000aCurrentPowerSource 26
ps3000aDataReady 27
ps3000aEnumerateUnits 28
ps3000aFlashLed 29
ps3000aGetAnalogueOffset 30
ps3000aGetChannellnformation 31
ps3000aGetMaxDownSampleRatio 32
ps3000aGetMaxEtsValues 33
ps3000aGetMaxSegments 34
ps3000aGetNoOfCaptures 35, 36
ps3000aGetStreaminglLatestValues 37
ps3000aGetTimebase 8, 38
ps3000aGetTimebase2 39
ps3000aGetTriggerInfoBulk 40
ps3000aGetTriggerTimeOffset 41
ps3000aGetTriggerTimeOffset64 42
ps3000aGetUnitinfo 43
ps3000aGetValues 11, 44
ps3000aGetValuesAsync 11, 46
ps3000aGetValuesBulk 47
ps3000aGetValuesOverlapped 48
ps3000aGetValuesOverlappedBulk 49
ps3000aGetValuesTriggerTimeOffsetBulk 50

ps3000aGetValuesTriggerTimeOffsetBulk64
51

ps3000aHoldOff 52
ps3000alsReady 53

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

ps3000apg.en r13

152

Index

Functions

ps3000alsTriggerOrPulseWidthQualifierEnabled |_

54

ps3000aMaximumValue 6, 55
ps3000aMemorySegments 56
ps3000aMinimumValue 6, 57
ps3000aNoOfStreamingValues 58
ps3000a0OpenUnit 59
ps3000a0penUnitAsync 60
ps3000a0penUnitProgress 61
ps3000aPingUnit 62
ps3000aRunBlock 63
ps3000aRunStreaming 65
ps3000aSetChannel 6, 68
ps3000aSetDataBuffer 69
ps3000aSetDataBuffers 70
ps3000aSetDigitalPort 71
ps3000aSetEts 17, 72
ps3000aSetEtsTimeBuffer 73
ps3000aSetEtsTimeBuffers 74
ps3000aSetNoOfCaptures 75

ps3000aSetPulseWidthDigitalPortProperties
76

ps3000aSetPulseWidthQualifier 77
ps3000aSetPulseWidthQualifierV2 80
ps3000aSetSigGenArbitrary 83
ps3000aSetSigGenBuiltIn 87
ps3000aSetSigGenBuiltInvV2 90
ps3000aSetSigGenPropertiesArbitrary 91
ps3000aSetSigGenPropertiesBuiltIn 92
ps3000aSetSimpleTrigger 7, 93
ps3000aSetTriggerChannelConditions 7, 94
ps3000aSetTriggerChannelConditionsV2 96
ps3000aSetTriggerChannelDirections 7, 98
ps3000aSetTriggerChannelProperties 7, 99

ps3000aSetTriggerDelay 101
ps3000aSetTriggerDigitalPortProperties 102
ps3000aSigGenArbitraryMinMaxValues 104
ps3000aSigGenFrequencyToPhase 105
ps3000aSigGenSoftwareControl 106
ps3000aStop 11, 107
ps3000aStreamingReady 108

H

Hysteresis 100, 103

Index modes 86

Information, reading from units 43
Input range, selecting 68
Intended use 1

LabVIEW
LED
flashing 29
Legal information 2
Liability 2

M

Macros in Excel
MATLAB 141
Memory in scope 10

Memory segments 10, 11, 19, 56
Mission-critical applications 2
Multi-unit operation 20

N

Numeric data types

O

One-shot signals 17

Opening a unit 59
checking progress 61
without blocking 60

139

139

143

P

PC oscilloscope 1
PC requirements 3
PICO_STATUS enum type 143
PicoScope 3000 MSO Series 1
PicoScope 3000A Series 1
PicoScope 3000B Series 1
PicoScope 3000D MSO Series 1
PicoScope 3000D Series 1
PicoScope software 1, 3, 143
Ports

enabling 71

PORTO, PORT1 6

settings 71
Power source 5, 24, 26
ps3000a API 3
ps3000a.dil 3
PS3000A_CONDITION_ constants 79
PS3000A_CONDITION_V2 constants 82
PS3000A_LEVEL constant 100, 103
PS3000A_PWQ_CONDITIONS structure 79
PS3000A_PWQ_CONDITIONS_V2 structure 82
PS3000A_RATIO_MODE_AGGREGATE 45

ps3000apg.enr13

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide

153

PS3000A_RATIO_MODE_AVERAGE 45
PS3000A_RATIO_MODE_DECIMATE 45
PS3000A_TIME_UNITS constant 41, 42

PS3000A_TRIGGER_CHANNEL_PROPERTIES
structure 100, 103
PS3000A_TRIGGER_CONDITION constants

PS3000A_TRIGGER_CONDITION_V2 constants

PS3000A_TRIGGER_CONDITIONS 94
PS3000A_TRIGGER_CONDITIONS structure
PS3000A_TRIGGER_CONDITIONS_V2 96

PS3000A_TRIGGER_CONDITIONS_V2 structure

97
PS3000A_WINDOW constant 100, 103
Pulse-width qualifier 77
conditions 79
requesting status 54
Pulse-width qualifierv2 80
conditions 82

R

Ranges 31
Rapid block mode 9, 12, 35, 36
aggregation 15
no aggregation 13
setting number of captures 75
Retrieving data 44, 46
block mode, deferred 48
rapid block mode 47
rapid block mode, deferred 49
stored 20
streaming mode 37
Retrieving times
rapid block mode 50, 51

S

Sampling rate
block mode 10
streaming mode 9
Scaling 6
Serial numbers 28
Setup time 10
Signal generator
arbitrary waveforms 83
built-in waveforms 87, 90
calculating phase 105
software trigger 106
Spectrum analyzer 1
Status codes 143
Stopping sampling 107
Streaming mode 9, 19
callback 108

getting number of samples 58
retrieving data 37
running 65

using 19
Structures 143
Support 2

T

Threshold voltage 7
Time buffers
setting for ETS 73, 74
Timebase 8
calculating 38, 39
Trademarks 2
Trigger 7
channel properties 76, 99, 102
conditions 94, 95, 96, 97
delay 101
digital port pulse width 76
digital ports 102
directions 98
pulse-width qualifier 77
pulse-width qualifier conditions 79
pulse-width qualifierV2 80
pulse-width qualifierV2 conditions 82
requesting status 54
settingup 93
stability 17
time offset 41, 42
time offsets in rapid mode 40

U

Upgrades 2

Usage 2

usB 1,3,4
hub 20
powering 5

Vv

VB.NET 142

Viruses 2

Voltage range 6
selecting 68

W

WinUsb.sys 3

Wrapper functions
AutoStopped 111
AvailableData 112

Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

ps3000apg.en r13

154 Index

Wrapper functions
ClearTriggerReady 114
decrementDeviceCount 115
GetStreaminglLatestValues 117
IsReady 119
IsTriggerReady 120
resetNextDevicelndex 121
RunBlock 122
setAppAndDriverBuffers 123
setAppAndDriverDigiBuffers 125
setChannelCount 127
setDigitalPortCount 128
setEnabledChannels 129
setEnabledDigitalPorts 130
setMaxMinAppAndDriverBuffers 124
setMaxMinAppAndDriverDigiBuffers 126
SetPulseWidthQualifier 131
SetPulseWidthQualifierv2 132
SetTriggerConditions 133
SetTriggerConditionsV2 135
SetTriggerProperties 136
StreamingCallback 137
using 109

ps3000apg.enr13 Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

PicoScope 3000 Series (A API) Programmer's Guide 155

Copyright © 2011-2015 Pico Technology Limited. All rights reserved. ps3000apg.en r13

Pico Technology

James House
Colmworth Business Park
ST. NEOTS
Cambridgeshire
PE19 8YP
United Kingdom
Tel: +44 (0) 1480 396 395
Fax: +44 (0) 1480 396 296
www.picotech.com

ps3000apg.en r13 04/12/2014
Copyright © 2011-2015 Pico Technology Limited. All rights reserved.

	Introduction
	Overview
	License agreement

	Programming the PicoScope 3000 Series oscilloscopes
	The ps3000a driver
	Minimum PC requirements
	USB port requirements

	Device features
	Power options
	Voltage ranges
	MSO digital data
	MSO digital connector
	Triggering
	Timebases
	Sampling modes
	Block mode
	Using block mode
	Asynchronous calls in block mode

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	ETS (Equivalent Time Sampling)
	Using ETS mode

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Combining several oscilloscopes

	API functions
	ps3000aBlockReady (callback)
	ps3000aChangePowerSource
	ps3000aCloseUnit
	ps3000aCurrentPowerSource
	ps3000aDataReady (callback)
	ps3000aEnumerateUnits
	ps3000aFlashLed
	ps3000aGetAnalogueOffset
	ps3000aGetChannelInformation
	ps3000aGetMaxDownSampleRatio
	ps3000aGetMaxEtsValues
	ps3000aGetMaxSegments
	ps3000aGetNoOfCaptures
	ps3000aGetNoOfProcessedCaptures
	ps3000aGetStreamingLatestValues
	ps3000aGetTimebase
	ps3000aGetTimebase2
	ps3000aGetTriggerInfoBulk
	ps3000aGetTriggerTimeOffset
	ps3000aGetTriggerTimeOffset64
	ps3000aGetUnitInfo
	ps3000aGetValues
	Downsampling modes

	ps3000aGetValuesAsync
	ps3000aGetValuesBulk
	ps3000aGetValuesOverlapped
	ps3000aGetValuesOverlappedBulk
	ps3000aGetValuesTriggerTimeOffsetBulk
	ps3000aGetValuesTriggerTimeOffsetBulk64
	ps3000aHoldOff
	ps3000aIsReady
	ps3000aIsTriggerOrPulseWidthQualifierEnabled
	ps3000aMaximumValue
	ps3000aMemorySegments
	ps3000aMinimumValue
	ps3000aNoOfStreamingValues
	ps3000aOpenUnit
	ps3000aOpenUnitAsync
	ps3000aOpenUnitProgress
	ps3000aPingUnit
	ps3000aRunBlock
	ps3000aRunStreaming
	ps3000aSetBandwidthFilter
	ps3000aSetChannel
	ps3000aSetDataBuffer
	ps3000aSetDataBuffers
	ps3000aSetDigitalPort
	ps3000aSetEts
	ps3000aSetEtsTimeBuffer
	ps3000aSetEtsTimeBuffers
	ps3000aSetNoOfCaptures
	ps3000aSetPulseWidthDigitalPortProperties
	ps3000aSetPulseWidthQualifier
	PS3000A_PWQ_CONDITIONS structure

	ps3000aSetPulseWidthQualifierV2
	PS3000A_PWQ_CONDITIONS_V2 structure

	ps3000aSetSigGenArbitrary
	AWG index modes

	ps3000aSetSigGenBuiltIn
	ps3000aSetSigGenBuiltInV2
	ps3000aSetSigGenPropertiesArbitrary
	ps3000aSetSigGenPropertiesBuiltIn
	ps3000aSetSimpleTrigger
	ps3000aSetTriggerChannelConditions
	PS3000A_TRIGGER_CONDITIONS structure

	ps3000aSetTriggerChannelConditionsV2
	PS3000A_TRIGGER_CONDITIONS_V2 structure

	ps3000aSetTriggerChannelDirections
	ps3000aSetTriggerChannelProperties
	PS3000A_TRIGGER_CHANNEL_PROPERTIES structure

	ps3000aSetTriggerDelay
	ps3000aSetTriggerDigitalPortProperties
	PS3000A_DIGITAL_CHANNEL_DIRECTIONS structure

	ps3000aSigGenArbitraryMinMaxValues
	ps3000aSigGenFrequencyToPhase
	ps3000aSigGenSoftwareControl
	ps3000aStop
	ps3000aStreamingReady (callback)

	Wrapper functions
	Using the wrapper functions for streaming data capture
	AutoStopped
	AvailableData
	BlockCallback
	ClearTriggerReady
	decrementDeviceCount
	getDeviceCount
	GetStreamingLatestValues
	initWrapUnitInfo
	IsReady
	IsTriggerReady
	resetNextDeviceIndex
	RunBlock
	setAppAndDriverBuffers
	setMaxMinAppAndDriverBuffers
	setAppAndDriverDigiBuffers
	setMaxMinAppAndDriverDigiBuffers
	setChannelCount
	setDigitalPortCount
	setEnabledChannels
	setEnabledDigitalPorts
	SetPulseWidthQualifier
	SetPulseWidthQualifierV2
	SetTriggerConditions
	SetTriggerConditionsV2
	SetTriggerProperties
	StreamingCallback

	Programming examples
	C
	C#
	Excel
	LabVIEW
	MATLAB
	VB.NET

	Reference
	Numeric data types
	Enumerated types, constants and structures
	Driver status codes
	Glossary

